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Abstract

This paper studies dynamic competition in quality and price when consumers are het-
erogeneous. Firms face exogenous horizontal differentiation from consumer preferences and
endogenous vertical differentiation from evolving product quality. Depending on the cost of
quality investment, firms either sustain low quality levels through upgrading deterrence or
engage in direct competition. These two modes generate non-monotonic patterns in upgrad-
ing frequency and investment efficiency that do not arise without horizontal differentiation.
Moreover, horizontal and vertical differentiation interact in cost-dependent ways: they act as
substitutes when investment is inexpensive and as complements when investment is costly. At
relatively lower cost levels, firms maintain balanced quality, and a greater horizontal differenti-
ation strengthens market power, raises profits, and intensifies quality competition. At relatively
higher cost levels, firms are more likely to be vertically differentiated, and a greater horizontal
differentiation dampens quality competition by reducing the profitability of quality leadership.
Our results provide a parsimonious framework for non-monotonic investment incentives and
highlight how horizontal and vertical differentiation jointly shape the dynamics of competition

and welfare.

1 Introduction

Competition among firms in markets with heterogeneous consumers is a classic topic in eco-
nomics (Hotelling, 1929). Many real-world competition scenarios are better explained by variation
in consumer preferences. Local Western and Asian restaurants offer different tastes and dish
designs to attract different consumers. Streaming platforms are often categorized by the genres
of the shows. Note-taking applications emphasize either efficient organizational tools or refined

handwriting interfaces to attract business professionals and students, respectively.
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Catering consumers’ tastes, however, is just one dimension of the competition. Firms must also
manage product quality, a task that is subject to unexpected quality shocks and is independent of
consumer tastes. For restaurants, an example of a quality shock can be mechanical failures, such as
a broken fryer, which may remove crispy fries from the menu until the fryer is fixed. For TV shows,
a quality shock can be a leading star departing a television series for personal reasons.! For apps,
a quality shock can be software bug reducing the usability of a note-taking app.? Alternatively,
even if a firm maintains its quality, it may fall behind when rivals upgrade their products, thereby
altering the relative quality ranking in the market.

Formally, firms compete along multiple dimensions of differentiation. In the examples above,
horizontal differentiation reflects differences in consumer tastes, while vertical differentiation cap-
tures differences in product quality. This paper examines how firms invest in and sustain product
quality when facing both horizontal and vertical differentiation. In particular, we examine the
efficiency of firms” quality investments and investigate whether these two dimensions of differen-
tiation are separable, and if not, whether they interact as substitutes or complements.

To answer these questions, we develop a dynamic Hotelling model in which two firms engage
in quality and price competitions. Horizontal differentiation is exogenously given, while the firms
endogenously determine their quality levels. High-quality products may experience unantici-
pated deterioration, whereas low-quality products can be restored to high quality through costly
investment, which is referred to as product upgrade.

Our main findings are as follows. First, upgrading frequency and the joint profits of the firms
are non-monotonic in upgrading costs. A large theoretical literature studies dynamic competition
in quality and investment (Maskin and Tirole, 1988a,b, 1987; Rosenkranz, 1995), often incorporating
additional features such as firm entry or exit (Ericson and Pakes, 1995; Doraszelski and Markovich,
2007; Doraszelski and Satterthwaite, 2010; Abbring et al., 2018), learning by doing (Besanko et al.,
2010), or reputation concerns (Board and Meyer-ter Vehn, 2013). Empirical studies also document
dynamic competition with heterogeneous consumers and non-monotonic patterns (Aghion et al,,
2005; Ryan, 2012; Gowrisankaran and Rysman, 2012; Eizenberg, 2014). Closely related to our work,
Besanko et al. (2010) analyzes how firms reduce production costs through higher sales but suffer
from organizational forgetting, which together shape the competitive edges. Consumer hetero-
geneity is modeled by an idiosyncratic preference shock with Type I extreme value distribution.

By contrast, we model consumer heterogeneity with a more familiar Hotelling market®, and the

1As an example, Two and a Half Men (CBS, 2003 — 2015) replaced Charlie Sheen with Ashton Kutcher at 2011 and

survived for another four seasons.
2As an example, Notability recognized that they were experienced performance issues leading to overheating the

users’ devices and draining the battery life. Some other apps experienced more significant issues, such as “the Sonos
app fiasco”, which even led to Sonos’ chief marketing officer, chief product officer, and eventually CEO leaving the
company.

3Few papers studied dynamic Hotelling competition problems, with one example being Lambertini (2012), although
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traveling cost parameter measures the extent of horizontal differentiation. Our model generates
non-monotonic dynamics without relying on additional features such as scrap values, learning-by-
doing, or reputation. Instead, we find that under a parsimonious framework, firms compete in two
modes: upgrading deterrence when quality investment is relatively cheap, in which the firms agree
to maintain low-quality equilibria to avoid costly quality wars, or direct competition when quality
investment is relatively expensive, in which firms employ mixed investment strategies to manage

the rivals” quality competition incentives by controlling the rivals” future prospects of investment.

Second, related to the non-monotonicity in the upgrading frequency, we show that firms
under-invest under relatively low or relatively high upgrading costs. When the upgrading cost is
intermediate, firms over-invest. It is well known that competition can lead to excessive investment,
for example through excessive entry (Mankiw and Whinston, 1986), or that investment incentives
are shaped by uncertainty, appropriability, and spillovers (Jones and Williams, 2000; Bloom et al.,
2013; Ahuja and Novelli, 2017). Over- or under-investment is also documented in empirical research
regarding, for example, chips (Goettler and Gordon, 2011) and automobiles (Esteban and Shum,
2007). Compared with the existing literature, our model shows that firms can under-invest because
of two different incentives: the potential of costly quality war, mainly at lower upgrading costs,

and the standard failure to internalize consumer surplus, mainly at higher upgrading costs.

Finally, we demonstrate that the two dimensions of product differentiation are not separable,
and the interaction mode depends on the upgrading cost. The dynamic interaction of different
dimensions of product differentiation is a topic less studied in the literature. Shaked and Sutton
(1982) and Motta (1993) examined how quality differentiation are used to lessen the competitions
in prices, but the consumers are mostly homogeneous, and the quality competition is just one
time. Some papers employed Hotelling models with additional features to represent the multiple
dimensions of differentiation, such as spatial Hotelling (Irmen and Thisse, 1998), or non-uniform
consumer distribution (Gabszewicz and Wauthy, 2012), but the models are mostly static. To our
knowledge, this is the first paper to analyze how horizontal differentiation and vertical differenti-
ation interact in a dynamic framework. When upgrades are cheap and firms have similar quality
levels, greater horizontal differentiation strengthens market power, raises profits, and intensifies
quality competition, thereby reducing vertical differentiation. When upgrades are costly, however,
one firm is more likely to emerge as the quality leader. Greater horizontal differentiation then
erodes the leader’s profits from market dominance, making leadership less attractive and discour-
aging rivals from catching up. This dynamic reinforces vertical differentiation. In turn, the two
differentiation exhibits substitution at lower upgrading costs and revert to complementarity when

upgrading costs are higher.

While the quality shocks are considered independent between competitors for the majority of

this paper is about the location decisions of the firms; that is, endogenizing the horizontal differentiation.



the analysis, the model can also apply to correlated shocks. In an extension, shocks are assumed
to be positively correlated, and the firms still hold both competition modes, although the specific
competition behaviors are modified by the correlations. More specifically, positively correlated
shocks can reset the quality of both firms and offer the opportunity of restarting evenly. For
upgrading deterrence, this restarting effect can end quality wars faster and make the deterrence
less effective. In turn, firms choose to increase the upgrading frequency in the quality war to
compensate. For direct competition, the restarting effect lowers the competition incentive by

reducing the possibilities of becoming a market leader, which reduces the upgrading frequency.

The remainder of the paper is structured as follows. Section 2 introduces the model. Section
3 analyzes the case without horizontal differentiation, where firms engage in dynamic Bertrand
competition in price and quality. Section 4 studies the full model with both horizontal and vertical
differentiation. In both cases, we compare the outcomes under duopoly competition with those of

a social planner. Section 5 discuss extensions, and Section 6 concludes.

2 The Model

Two firms engage in dynamic competition in a Hotelling market. Time is discrete and infinite,
and the period length is A. A is used to model how fast firms can react to nature or each other.*
The analysis primarily focuses on the scenarios where firms can react swiftly, and the equilibrium
behaviors are described at limit of the equilibria when A — 0. This approach provides an
approximation of the equilibria, streamlines the expressions by removing the higher order terms
to offer clearer insights, yet still keeps the easier interpretations of a discrete-time model.>

We start by discussing the static competition environment, which is a standard Hotelling
competition environment. The two firms are located at the boundaries of the Hotelling market
[0, 1], thereby referred to as Firm 0 and Firm 1, respectively. Firms’ locations are exogenously fixed.
Each firm produces a product with quality that can be high (H) or low (L). Let v, be the value of
the product with quality ¢, and

vy = 1, and vp=aé€ (O, 1).

The production costs are normalized to 0.

4In particular, A does not affect consumer dynamics. As we will formally establish, consumers are transient and will

leave the market by the end of their arrival period. The total mass of consumers are also not affected by A.
5It may be perceived that we are studying here a continuous time model by taking the limit A — 0. Still, there

are a few reasons to consider a discrete time model instead. First, it is more reasonable to believe that firms’ strategic
decisions are discrete. Second, starting from a discrete-time model will avoid some possible continuous-time artifacts.
Later we will see that there is an equilibrium that is well-defined as a discrete-time limit but not well-defined. In short,
the reader should consider the results in discrete time, and the limit is just for the simplicity of expositions.
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In each period, there are mass 1 - A consumers uniformly distributed on [0, 1]. Each consumer
can choose to purchase from Firm 0, Firm 1, or not to purchase. If the consumer purchases, she
pays a traveling cost in addition to the price charged by the firm. The traveling cost is linear in the
distance between the consumer and the firm, measured by a coefficient k. If the consumer does not
purchase, she gets an outside option normalized to 0. Formally, suppose the quality level and price
of Firm i, i = 0,1, are ¢; and p;, respectively. Consumers at location ¢ € [0, 1] make purchasing
decisions to

max{qo —po — kl,q1 —p1 — k(1 —¢),0}.
Unless stated otherwise, assume 0 < k£ < 1/3.

The traveling cost coefficient k represents the horizontal differentiation; that is, to what extent
the consumers are heterogeneous. From firms’ perspective, this also measures how large the
market power is. The restriction on the size of k then guarantees that firms engage in meaningful
competitions rather than act as separated monopolists when the quality levels are not too low.°

We next discuss the dynamics of the model, more specifically, the evolution of the quality.
When ¢; = L, as the quality is already low, there is no further quality decay, but Firm ¢ can upgrade
the product to restore the quality to ¢; = H. The upgrade is instant and requires a lump-sum cost
c. When ¢; = H, as the quality is already high, there is no further upgrade, but a negative shock
from nature can cause an instant and permanent quality decay, rendering ¢; = L. The decay is
“permanent” in the sense that ¢; remains at L after a shock until the firm pays cost ¢ and upgrades
the product. In each period, if the quality is H, nature places a shock with probability b, which is
a function of A. The shocks are independent between firms. We assume that

b=1—e P8,

In particular, when A — 0, the shock behaves as if a Poission arrival process with parameter 3 > 0.

The firms play Markov strategies with the quality pair (go, ¢1) being the quality-relevant state.

In general, for a fixed period length A, Firm i’s strategy is a map:

{(gi,qj)} = [0,1] x Ry.

The first dimension is the upgrading probability. It is only meaningful when ¢; = L. Alternatively,
we can allow Firm i to upgrade when ¢; = H, although the upgrade does not have any effect on the
quality and is still costly. Firm ¢ can play a mixed strategy by choosing an upgrading probability
between 0 and 1. The second dimension is the price.

At (an arbitrary) period n, let (¢, ¢7') be the state at the beginning of the period. If (¢qf, ¢}") #
(H, H), firms first make upgrade decisions, which modify the state to the intermediate (g7, ¢7'). If

¢The choice 1/3 also involves concerns of static game equilibria when the quality levels are lower. In Appendix A,
we will discuss how the size of k and « affect the static Hotelling game equilibria.
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(qg,q7) # (L, L), nature then decides whether or not to place shocks, and the state after nature’s
shock is (g5 *", ¢t1). This is the state faced by the consumers at period n, the state under which
firms make pricing decisions for period n, and the state at the beginning of period n + 1. This stage
game order also allows nature to cancel out the upgrading efforts from firms. The stage-game

timeline is pictured at Figure 1. The firms discount future payoffs using a common discount factor
§=eTA,

Firms’ upgrade decisions Firms’ pricing
n , , /uvl ="+ A
, l (@™, ™ J :
___________ | Y ——
(@, ar)
(a5, at) (a6™ )
Nature’s shock(s)

Consumers purchasing

FiIGURe 1 Stage Game Timeline

In general, the order in the stage game has strategic impacts on the game outcomes. For
instance, it matters whether nature can cancel out firms” upgrading efforts. To see this, consider a
social planner who would like to maximize the consumer surplus when £ = 0. If as opposed to the
order above nature moves first, the social planner should never have the incentive to duplicate the
high-quality product: The social planner can guarantee a high-quality product for the consumer
in each period, by simply keeping one high-quality product after nature’s shocks. Given there
is no traveling cost, this is sufficient to keep the consumer surplus at the highest possible level.
However, if the social planner moves first as stated above, the social planner could duplicate the
high-quality products, with the second high-quality product serving as the insurance for nature’s
shocks. Nevertheless, in the limit as A — 0, the order of moves does not affect the equilibrium
outcomes. In particular, this is due to nature’s shock probability decreases in A and converges
to 0 when A — 0. In the social planner example, this means the probability that both products
receiving shocks is 0, so that the duplication is not useful again.”

Because firms can adjust prices each period after observing the realized state at no cost, pricing
is reduced to a static problem. Naturally, firms will play the static Nash-equilibrium pricing
strategies, which we will briefly discuss in subsection 2.1. For this reason, we will focus mainly
on the upgrading strategies, denoted by o; : {(¢:,¢;)} — [0,1]. For a given ¢; and nature’s shock

probability b, o; then determines the probabilities of state transition. Let

Mo, (G4 | ¢ 45)

7In the online appendix (available soon), we considered an alternative stage-game timeline and showed that the

results of the paper remain robust under this alternative timeline.



denote the probability of the state transitioning from (g;, g;) to (q;,q;). Let mi(g;, g;) be Firm i’s
stage payoff at state (¢;, ¢;), and Firm i’s expected payoff V;(q;, ¢;) at state (g;, ¢;) can be recursively
defined as
Vigin qj) = mi@i )A + €7 D Mg, 0,m) (445 | i a5) Vild), )
(96,41)
Both firms are expected-payoff maximizers.

The equilibrium concept is symmetric Markov perfect equilibria (MPE), although asymmetric
MPE are also considered. The following reasons support the focus on symmetry. First, given that
the game environment and the firms are perfectly symmetric, the symmetric equilibria are consid-
ered more reasonable under Harsanyi Symmetry-Invariance Criterion. In particular, this guarantees
that the equilibria do not persistently favor one firm over the other. Second, symmetric equilibria
are also more robust under many selection standards. For one thing, the model does not introduce
a fixed cost to stay in the market at each stage for simplicity. This allows some asymmetric equilib-
ria, such as Chicken-type equilibria, to exist. However, if a fixed cost exists, however small it might
be, such asymmetric equilibria will be eliminated as the weaker firm will exits the market, yet the
existence of symmetric equilibria is not affected. For another, from an evolutionary perspective, a
symmetric equilibrium can be supported when players are randomly drawn from a pool of players
of different types. For instance, a restaurant owner may choose to liquidate the restaurant by selling
it to the next owner due to personal finance reasons. Luo and Stark (2014) showed that the median
of the life spans of a full-service restaurant in the western US is about 4.5 years, and it is even
shorter, 3.75 years, for small restaurants. This suggests that a firms may engage in competition
with a “renewed” opponent from time to time. Thirdly, as we will discuss in Appendix D, many
asymmetric equilibria cannot fully eliminate inefficiencies, do not introduce additional economics
insights compared with symmetric equilibria, and are more complicated in terms of computations
and expositions. Finally, it is a tradition in strategic investment literature to consider symmetric
equilibria (Pakes and McGuire, 2001; Keller et al., 2005). If there are multiple symmetric MPE,
the MPE offers highest joint profit is considered for welfare implications. Naturally, if firms are
allowed to communicate before playing the game, given that the two firms and the equilibrium
profiles are symmetric, firms should agree on playing the joint-profit maximizing equilibrium.

It may also be a concern regarding firms collusion behaviors, i.e., whether more generic equi-
librium concepts, such as subgame perfection, should be selected instead of MPE. While a folk-
theorem type equilibrium can possibly achieve highest joint profit, it is a long tradition in both
theoretical and empirical research to focus on MPE when considering industry dynamics (Maskin
and Tirole, 1987, 1988a,b; Doraszelski and Satterthwaite, 2010; Aguirregabiria et al., 2021). MPE
are often favored for the following reasons. First, it is conceptually easy by not relying on the
full history of the game. This also suggests that it is easier to compute and to apply in empirical

research. Second, collusions are often considerd less plausible in many industries. Collusions
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may be impossible for policy reasons (i.e., the prohibition of cartels) or the industry structure. For
instance, collusions among restaurants can be difficult due to the relatively short life span of the

ownership as well as the relatively low entry barrier.
2.1 The Stage Game

Before analyzing the dynamic competitions, we first briefly study the static stage game, which
will help illustrate the upgrading incentives in later discussions. In this section, we will state some

results and intuitions only, leaving the formal analysis of the stage game to Appendix A.

First consider k& = 0, where there is no horizontal differentiation. The market is thus reduced
to Bertrand, and the products are exactly the same when they are with the same quality. In turn,

Bertrand competition implies that
mi(H,H) =m(L,L)=0.

In case that the quality levels are different, the quality leader has the competitive advantage.
Consider (¢;,qj) = (H,L) as an example, where Firm i has a higher quality level. As long as
po < vg — vy, = 1 — o, Firm j cannot gain any consumer even if p; = 0. Firm 0 then should charge

the highest possible price that allows it to occupy the market, leading to
Wi(H7L):1ia7 WZ(LvH):O

in the Nash equilibrium. Consumers are indifferent between two firms and choose to purchase
from higher quality firm. In particular, notice that the only state that offers positive stage payoff
when k = 0 is the quality-leader state.

Next, consider £ > 0, and the market is Hotelling. Under a positive k, firms have a market
power and can charge a positive price even at the balanced state (H, H). Even if Firm 1 charges
price exactly 0, a consumer at location 0 can get 1 — k from Firm 1. If Firm 0O instead charges
e > 0, firm 0 can attract consumers in [0, (k — ¢)/2k] and get a positive payoff. As Firm 0 charges
a higher price, Firm 1 also faces weaker competition and has the incentive to increase its price. In
the equilibrium, .

Wl(H,H) = 5,

and the firms split the market from the middle. Notice that the stage payoff is in fact increasing in
k. Intuitively, firms can earn higher profits when their market powers are higher. Of course, this
intuition and the corresponding result relies on the assumption that k is not too large. For larger £,
firms find it too difficult to attract the middle consumers and become separated small monopolists.
At this stage, a higher price leads to fewer consumers and in turn fewer profits.

The situation at (¢;,q;) = (H, L) is similar if v;, = « is not too small, and the same intuition

applies. However, when « is smaller, the forces can be different due to a different equilibrium
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market structure. When « is small, Firm 7 has an incentive to be a pseudo monopolist and occupies
the whole market. The gain in the market share dominates the loss from charging a more aggressive

price, 1 — a — k. This leads to
Fi(H,L):l—Oé—k, Fi(L,H):O.

In this case, notice that the stage profit decreases as k increases. Intuitively, as k increases, there is
a higher cost to serve far away consumers, and Firm 7 must charge a lower price to keep Firm j

outside the market.

3 Vertical Differentiation with Homogeneous Consumers

A simpler problem is to consider the firms” upgrading strategies when the consumers are
homogeneous. More specifically, this section considers a special case k¥ = 0 and removes the
horizontal differentiation. This simplification allows clearer interpretations of firms’ incentives
and provides useful contrasts with the case with both vertical and horizontal differentiation,

which is discussed in the next section.
3.1 The Social Planner Benchmark

As a benchmark, a social planner who maximizes the total surplus, defined as
Consumer surplus + Producer surplus — Upgrading costs,

is analyzed first. The social planner is utilitarian: for a given state (go, ¢1), the allocation of surplus
isirrelevant, so that the social planner should always let the consumers purchase from the firm that
offers higher trading surplus.® One simple price strategy to implement this is to set pg = p; = 0,
which allows consumers to choose the product with higher quality. The stage social surplus is

then

w(qo, q1) = max{vgy, vg, }-
The social planner’s optimal policy is as follows.’

Proposition 1. The limit of the social planner’s optimal policy as A — 0 is

e Upgrading one product at (L, L) and no other upgrade if ¢ < (1 — ) /(r + 3).
* No upgradeif ¢ > (1 —a)/(r + f).

8The trading surplus for each consumer is always positive since o > 0 and k& = 0. In turn, the social planner covers
g surp ys p P

the whole market in any optimal policies.
*Unless stated otherwise, the optimal policy and all later results are stated in the limit where A — 0.



The proof is in Appendix B. The threshold has a clear interpretations if the social planner
upgrades one product at (L, L), the state will be maintained at state (H, L) (or (L, H)) in the limit.
The flow payoff is vy = 1. If the social planner does not upgrade at all, the state will be (L, L)
forever, and the flow payoff is v;, = . The threshold, (1 — «)/(r + /), represents the increase in
the present value of social welfare from making the upgrade. If this increase exceeds the cost, the

social planner upgrades.

Notice that the social planner never upgrades both products and duplicates high-quality prod-
ucts in the limit. As we mentioned in subsection 2.1, the flow social welfare does not benefit from
a second high-quality product: the shock probability is negligible in the limit, consumers face no

travel costs, and maintaining an additional high-quality product is costly.
3.2 Duopoly Competition Equilibria

Now consider the duopoly competition. As with the social planner, firms will not upgrade
when the upgrading cost is too high. In fact, the threshold at which firms stop upgrading is the
same as that of the social planner. To see this, suppose Firm 1 never upgrades. Firm 0’s problem is
then to decide whether to upgrade at state (L, L). If Firm 0 chooses not to upgrade, the stage payoff
is 0. If Firm 0 upgrades, it becomes the pseudo-monopolist that occupies the whole market and
enjoys the stage profit 1 — . The gain from upgrading, in present value, is exactly (1 —a)/(r + ).
If the cost is higher, then even if the opponent chooses not to upgrade, Firm 0 should also refrain
from upgrading since the pseudo-monopolist profit is still not sufficient to cover the upgrading

cost. This constitutes the no-upgrading MPE.*°

I Lemma 2. If ¢ > (1 — a)/(r + ) = ¢, both firms never upgrading is a limit of an MPE.

The proof is included in Appendix B, which formalizes the argument above.

Low Cost Levels. When costs are lower, firms have incentives to make at least some upgrades.
Nevertheless, there is no MPE in which both firms always upgrade whenever possible when ¢ > 0.
Intuitively, if each firm upgrades whenever a shock occurs and the state remains (H, H), firms
earn no stage payoff due to Bertrand competition. Yet upgrades are costly, implying that firms
would have strictly negative expected payoffs. Therefore, when ¢ < ¢, firms must employ “partial”
or “occasional” upgrading strategies in any equilibrium. Specifically, for each firm, there are two
upgrading decisions: whether or not to upgrade when the opponent’s quality is H, and when the
opponent’s quality is L. The questions are: (i) in which state should a firm upgrade, and (ii) what

should the upgrading frequencies be? Without loss of generality, consider Firm 0:

"Note that the social planner’s threshold and the firms’ threshold coincide only at k& = 0. More details are discussed

at subsection 3.3.
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* Atstate (L, H), if Firm 0 upgrades, the state becomes (H, H), and Firm 0 receives no imme-
diate profit from upgrading.

* Atstate (L, L), if Firm 0 upgrades, then as long as Firm 1 does not upgrade for sure, Firm 0
can reach (H, L), where it earns positive profit. Even if Firm 1 upgrades for sure, the state
becomes (H, H), the same outcome as upgrading at (L, H).

Thus, the immediate outcome after upgrading at (L, L) is weakly better than upgrading at (L, H).
It is therefore natural to conjecture that both firms should upgrade at (L, L) when c is sufficiently
low. This leads to the following MPE.

Proposition 3. The following is the limit of an MPE if the upgrading cost

s —a)
(28 +r)(r +8)

* At (L, L), Firm i upgrades for sure.

C:

0<cec<

* At (L, H), Firm ¢ upgrades with rate

(1-a)B = (r+B)(r+2B)c
(r+B8)c ’

fle) =

Moreover, f is strictly decreasing in c.

The proof is in Appendix B. To understand the upgrading incentives, consider how Firm 0
reaches state (H, L), the only state in which Firm 0 has positive stage profit under this MPE. Given
that Firm 1 always upgrades at state (L, L), if Firm 0 also upgrades at (L, L), the state becomes
(H, H), which yields no immediate profit. Instead, Firm 0 profits only if nature places a shock on
Firm 1’s product and changes the state to (H, L). Firm 1’s strategy at (H, L) therefore matters, as

it determines the expected duration that Firm 0 remains in its only profitable state (H, L).

If Firm 1 upgrades at state (H, L) for sure, the state will transition to (H, H) immediately. As
A — 0, the expected duration spent at (H, L) converges to zero. For any positive upgrading cost
that remains constant as A — 0, such an aggressive strategy does not provide sufficient incentive
for Firm 0 to upgrade at (L, L). Hence, an equilibrium in which both firms upgrade at (L, L)
cannot be supported. Conversely, if Firm 1 never upgrades at (H, L), the only way Firm 0 exits
state (H, L) is via nature’s exogenous shock. The expected duration of (H, L) is then the longest
possible, which strictly incentivizes Firm 0 to upgrade for sufficiently low c. But this eliminates
Firm 1’s incentive to upgrade at (L, L). More specifically, Firm 0’s upgrading incentive at (L, H ) is
the same as at (L, L), since upgrading in either state leads to (H, H) at the same cost ¢, and staying
at (L, H) also yields zero payoff. Thus, if Firm 0 has strict incentive to upgrade at (L, L), it must
also have strict incentive to upgrade at (L, H). By symmetry, Firm 1 would then not find upgrading

at (L, L) optimal. This again cannot support the candidate equilibrium. Therefore, Firm 1 cannot
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adopt a pure strategy of never upgrading at (H, L).

(L, H)

(L,L) — (H, H) shock | (. 1)

Ficure 2 State evolution when the opponent upgrades at (L, L)

The only remaining possibility is that Firm 1 plays a mixed strategy at (H, L). The idea is to
control Firm 0’s upgrading incentive so that Firm 0 does not always upgrade at (L, H), which in
turn supports Firm 1’s upgrading at (L, L). In other words, Firm 0 must also mix at (L, H). This
suggests Firm 1 must choose its mixing probability at (H, L) exactly so that Firm 0 is indifferent
between upgrading and not upgrading at (L, L) and (L, H). The indifference condition yields
the function f(-) specified in Proposition 3. Given this indifference, Firm 0 upgrades for sure at
(L, L) and uses the same mixing strategy at (L, H). Symmetrically, Firm 1 then finds it optimal to
upgrade at (L, L) and mix at (H, L), which supports the candidate equilibrium.

One feature of this MPE is worth emphasizing: upgrading incentives are not generated by the
immediate payoff from upgrading. In fact, the state (H, H) provides no profit under Bertrand
competition. Instead, incentives are derived from expected future profits. In this sense, the
vertical-differentiation-only problem is relatively simple: upgrading incentives are determined
solely by the expected duration in the profitable state. For Firm 0, the expected positive durration
at (H, L) in the future alone provides the incentive for the upgrade at (L, L), and this incentive is
fine-tuned by Firm 1’s mixed strategy.

As ¢ increases, upgrading at (L, L) becomes more costly. In turn, stronger incentives are
needed to induce upgrading. This requires a longer expected duration in the profitable state,
which is achieved through a lower upgrading rate. Intuitively, a firm views the opponent’s mixed
upgrading strategy as an additional “shock” that ends its profitable state, on top of nature’s shock.
A lower mixing rate reduces this effective shock probability, extending the expected duration. At
the boundary ¢,

fe) =0,
so the opponent does not upgrade at the firm’s profitable state. The duration in the profitable state
is then determined solely by nature’s shock rate and is the longest possible.

Middle Cost Levels. Since ¢ < ¢, some upgrades are still possible. When ¢ < ¢ < ¢, the
upgrading incentive must be stronger, yet firms cannot further lower the mixing rate to provide
larger incentives to induce upgrading since f(¢) = 0 already. In turn, if Firms still upgrade at

(L, L), there must be another channel to strengthen the upgrading incentive.
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To achieve this, observe that state (H, H) is less ideal for each firm. Firms have no immediate
profit. Instead, a firm must wait for shocks from nature to land at the profitable state. But this
is uncertain: the next shock from nature may strike the firm’s own product, benefiting the rival,
and the firm still earns no profit after the shocked. Even if the next shock hits the opponent, the
probability of an immediate shock is zero, so the firm must wait, and discounting reduces the
present value of the resulting profits. Due to the discount, this wait already depreciates the future
profits. If the firms can bypass state (H, H) and land at either (H, L) or (L, H), the upgrading
incentives can indeed be enlarged. This can be achieved by adopting mixed strategies at (L, L), as

shown in Figure 3.
(L,H) --- (L,H) --- (L,H) -
/(H,L)/(H,L)/(EL)
(L, L) é(L,L) < (L,L) L(L,L) - .
\(H,H)\(H,H)...\(H,H)

Ficure 3 Mixing at (L, L)

When firms mix at (L, L), the realized state can be (L, H), (H,L), (L,L) and (H,H). In the
first two cases, the corresponding firm avoids the wait and uncertainty at (H, /) and arrives at
the preferred state immediately, which provides larger incentive for upgrading. In the case that
the mixing realization is (L, L), the firms will mix again (since they play a Markov strategy). Since

both play mixed strategies, the firms can still clash and both upgrade, leading to state (H, H).

One particular issue is how to interpret the mixed strategy at the limit when A — 0. Tradi-
tionally, if one takes a complete continuous-time perspective, a mixed strategy is expressed by a
cumulative distribution function (CDF), which under Markov strategies corresponds to a constant
hazard rate. This is exactly what happens in Proposition 3, when firms play mixed strategies at
(H,L) and (L, H). By contrast, that reduction to a constant rate does not apply here. Let §(A, c)
be the mixing probability before taking the limit, and let’s temporarily suppress the argument ¢
for the ease of notation. If the mixed strategy here also converges to a rate, this means there must
exist g > 0 such that

C Ay .g9a) .
kglog(A)_O and ilglo N

However, such mixed strategy cannot be supported in an MPE. To illustrate the reason, consider
Firm 0’s upgrading incentives at (L, L), when Firm 1 mixes in the rate fashion. When A is small,
the probability that Firm 1 upgrades at (L, L) is then small. Then instead of playing a rate mixing
as well, if Firm 0 upgrades at (L, L) for sure, Firm 0 can land at (H, L) with probability almost 1
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(and exactly 1 in the limit). This means not only is (H, H) perfectly bypassed, but Firm 0 also lands
at its profitable state (H, L) for sure. Given the candidate profile in which Firm 1 does not upgrade
at (H, L), Firm 0 can enjoy the positive profit state for the longest possible duration in expectation.
This represents a profitable deviation from the rate-mixing strategy, which breaks the candidate
equilibrium. In other words, in a rate-mixing profile, firms have a first-mover advantage and an

incentive to front-load upgrading probability, so that such profile cannot be an MPE.
The mixed strategy that sustains an MPE satisfies

lim G(A) = 1].
Alglog( ) =g¢€[0,1]

In other words, the mixing probability converges to a positive number in the limit. This will
keep the possibility that two firms clash and get to state (H, H), or the possibility that the state
lands at the opponent’s favorite state. These possibilities balance out the first-mover advantage of
upgrading at (L, L), restoring indifference and sustaining mixing rather than certain upgrading.

The MPE is summarized in Proposition 4 below.

Proposition 4. The following is the limit of an MPE if the upgrading cost ¢ < ¢ < &
e At (L, L), Firm ¢ upgrades with probability g(c), where,

_r+28(1—-a)—(r+p)ec
g(c)_r—l-,b’ 11—« '

e At (L, H), Firm ¢ does not upgrade.

Moreover, g is strictly decreasing in c.

The proof is in Appendix B. Some technical details regarding the probabilistic mixing at (L, L)
are in order. First, this should be considered as a limit of discrete-time MPE instead of a purely
continuous-time MPE. At continuous-time setup, it is difficult to define probabilistic mixing with-
out encountering a measurability issue!!, unless one is willing to employ a non-standard strategy
space. Interpreted as a discrete-time limit, the result approximately describes the mixing behavior
when A is sufficiently small but positive. For a positive A, the mixing must be probabilistic by na-
ture, and the measurability issue does not arise. Second, under probabilistic mixing, the outcome

of the game in the limit has the following two features:

* (L, L) is not on-path. The remaining three states are all on-path.

¢ g determines the relative duration of states on path.

In a simplified argument, imagine that each firm may potentially mix many rounds before one firm finally upgrades.
In particular, as long as no one upgrades, the mixing must be repeated indefinitely. As A — 0, the law of large numbers
indicates that each firm should have an upgrading probability 1 instead of a positive number strictly between 0 and 1.
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To better understand these two features, consider Figure 3 again. For A close to 0, for any positive
time duration at (L, L), the firms would need to mix "almost infinitely many" times during any
positive time spent at (L, L) if neither upgrades. But as A — 0, the law of Large Numbers implies
that some firm(s) must have upgraded. In the limit, this implies (L, L) cannot be sustained on
the equilibrium path. In each round, the probability mass on (L, L) is redistributed across the
remaining three states. Therefore, the outcome distribution of (H, H), (H, L) and (L, H) is then

g° g(1—g) an g(1—g)
?+29(1—g)" ¢*+29(1—-g)’ g +29(1—g)’

respectively.

From the perspective of this outcome distribution, the MPE profile in Proposition 4 provides
stronger incentives than the profile in Proposition 3 by replacing part of the probability mass of
landing at (H, H) with the probability mass of landing at (H, L)/ (L, H ). Taking Firm 0 for example,
replacing (H, H) with (L, H) does not hurt Firm 0 since neither state provides any profits, and
replacing (H, H) with (H, L) is strictly beneficial. As g decreases, the probability of landing
at (H, H) decreases, so that the incentives is increasing, which helps to counter the increasing
upgrading cost. Hence, decreasing g shifts probability mass from (H, H) to (H, L), lengthening
the expected tenure in the profitable state and offsetting higher costs.

The aforementioned three MPE in Lemma 2, Proposition 3 and Proposition 4 cover the cost
range, with the upgrading frequency gradually decreasing. At the boundaries of two MPE, the
upgrading profile transitions smoothly. That is, the two MPE at the corresponding boundary
coincide. The three MPE and the corresponding upgrading rates/probabilities are illustrated in
Figure 4, and it turns out these are the only symmetric MPE for postive upgrading cost.

I Theorem 5. In the limit, there is a unique symmetric MPE for each ¢ when £ = 0.

The proof is in Appendix B. Conceptually, since there are only four states, the proof enumerates
all possible profiles and checks, for each, the cost ranges under which it can be an MPE. It turns

out that most profiles cannot be an MPE in any positive cost level.

The two types of MPE discussed above has a common feature: firms need to act simultaneously
when the state hit (L, L). This may become problematic: if one firm just simply hesitate for a
short time period, the symmetric simultaneous product upgrade may be broken. However, by
considering the discrete-time setup, firms do not need to upgrade exactly simultaneously. Instead,
itis sufficient if they upgrade within a short period. More realistically, this means both firms choose
to invest when they observe the opportunity of becoming a quality leader, and both obtain the
quality advancement within a reasonably short time period. Many real-world examples have this

feature: PlayStation and Xbox, Covid vaccines from Pfizer and Moderna, Al race among OpenAl,
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FiIGure 4 MPE with Vertical Differentiation Only

Google, and Meta, etc. Duplications of investment are also observed in some other innovation
papers, such as Akcigit and Liu (2016).

Additional MPE. Apart from the MPE above, there are some other symmetric MPE at ¢ = 0,
and other asymmetric MPE when ¢ > 0. When ¢ = 0, there are multiple MPE possible. It
is straightforward to verify that always upgrading when possible is an MPE given the trivial
upgrading cost. It turns out that the corresponding firm upgrades at (L, H) and (H, L) while no

firm upgrades at (L, L) is an MPE as well. Such MPE and related multiplicity are discussed later
in subsection 4.3.

In terms of asymmetric MPE, both symmetric MPE are accompanied by some asymmetric
MPE. The easy case is when ¢ < ¢ < ¢, where instead of both firms mixing at (L, L), they can
play a Chicken game at (L, L) instead, leading to a state (H, L) (or (L, H), depending on who
the “chicken” is) forever. As a preview of social-welfare analysis in subsection 3.3, observe that
the outcome is the same as the social planner, and the equilibrium is in fact efficient in this case,
relative to the social planner’s outcome. Nevertheless, this paper will focus on symmetric MPE.
Apart from the reasons discussed in section 2, it is worth noticing that not all asymmetric MPE are
efficient. For example, when 0 < ¢ < ¢, the efficient asymmetric Chicken profile discussed above
cannot be maintained. To see this, recall that when ¢ < ¢, no upgrading at (L, H) means Firm 1
has strict incentive to upgrade at (L, L), even if the firm believes that the opponent will upgrade

at (L, L) as well. In Appendix D, it is shown instead that the following profile is an (asymmetric)
MPE:

e Firm 0 upgrades at (L, L) with a positive probability and does not upgrade at (L, H).
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e Firm 1 upgrades at (L, L) for sure and upgrades at (H, L) with a rate.

To see this is an MPE, notice that Firm 1 plays the same strategy as the one in Proposition 3, so that
Firm 0 is indifferent at both states. This means Firm 0 is best responding. Also, if Firm 0 does not
upgrade at (L, H), Firm 1 has strict incentive to upgrade at (L, L). In addition, if Firm 0 upgrades
with a probability at (L, L) rather than upgrades for sure, Firm 1’s upgrading incentive at (L, L) is
strictly larger than the incentive at (H, L), which makes sustaining indifference at (/, L) possible.
This asymmetric MPE is still not efficient: (H, H) occurs with positive expected duration — either
because Firm 0 upgrades at (L, L) or Firm 1 upgrades at (H, L). Since (H, H) is never optimal for
the social planner, this MPE is inefficient.

3.3 Investment Efficiency

In this section, we consider firms’ investment efficiency. In particular, compared with the social
planner who maximizes the social surplus, do the firms upgrade too frequently, not frequent
enough, or just at the efficient level? Following from the MPE profiles, it is clear that when
0 < ¢ < ¢, firms competition outcome is a distribution over three states, (H, H), (H, L), and (L, H).
Moreover, (H, H) will happen with strictly positive duration. The social planner, however, never
duplicates high-quality products.’> When (H, H) is on-path (and (L, L) is not), firms over-upgrade

relative to the social planner.

I Corollary 6. If 0 < ¢ < ¢, firms over-upgrade and never under-upgrade.

As in the prior literature, the over-upgrading (or over-investment in general) is driven by the
competitions of the firms. As upgrading cost increases, the competition is softened, and the
upgrading frequency gradually decreases, reducing the extent of over-upgrading. When c reaches

¢, the firms stop upgrading and attain efficiency.

In addition, in this vertical-differentiation-only case, the social planner and the firms stop
upgrading at the same bound ¢. This is specific to the vertical-differentiation only case. For the
social planner, let w(qo, q1) be the stage social welfare, and the highest cost that supports upgrading
is

w(H,H) —w(H, L)
r+p '

For firms, let my(qo, ¢1) be the stage profits of Firm 0, and the highest cost that supports upgrading

12The social planner’s policy may appear asymmetric, since the high-quality product is never duplicated. Neverthe-
less, this outcome can also be achieved by a symmetric policy: Each time nature places a shock and the state reaches
(L, L), the social planner can randomize with equal probability to upgrade Firm 0’s product or Firm 1’s product. This
is a symmetric policy that never duplicates high-quality products. In fact, this shows clearly that the inefficiency is
generated by the lack of coordination between firms in duopoly competition.
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is

mo(H,H) —mo(H, L)
r+p '
When k =0, w(H,H) —w(H,L) = mo(H, H) — mo(H, L). When there is horizontal differentiation,
the boundaries in general do not coincide. Fundamentally, with vertical differentiation only (k = 0),
consumers always buy from the higher-quality firm even under duopoly, so competition does not
generate stage-game inefficiency. As shown in the next section, this is no longer true when £ > 0,
and the two thresholds differ.

3.4 Firms’ Long-Run Average Joint Profits

The social planner can also be considered as a consumer-surplus maximizer. From this perspec-
tive, it is also useful to consider firms” welfare in terms of joint profit. While this can be measured
using the value function directly, the value functions depend on the initial state. For example,
consider the MPE profile in Proposition 3, in which case both firms upgrade at the moment the
state hits (L, L). The value function of either firm at (L, L) contains an immediate upgrading cost
c compared with the value function at (H, H). The significant impact of the upgrading cost may
obscure the insights regarding joint profits. To avoid this issue, this section considers the firms’
long-run average profits. Specifically, the long-run average joint profit measures the expected joint
profit per unit of time in the far future, when the state distribution has converged and no longer
depends on the initial state. This can be called the “steady state”, characterized by the steady-state
distribution. At this unit of time, in either the MPE described in Proposition 3 or the MPE described
in Proposition 4, part of the time 75 is spent at the balanced high state (H, H), while the remaining
time 77 is spent at the imbalanced states (H, L) or (L, H)'®. The shock rate and the MPE determines
the transition probability between states, and the frequency at which the firms pay the upgrading

costs.

A further and arguably more important reason to consider joint profits in this way is to
obtain 75 and 77. 7p measures the time spent in state (H, H)when the firms’ products are not
vertically differentiated, while 7; = 1 — 73 measures the time duration of states that feature vertical
differentiation. 75 in turn is an indicator that reflects the extent of vertical differentiation, which is

particularly useful when considering the interactions of the two differentiation in the next section.

As an example, we calculate 75 and the joint profit in MPE profile in Proposition 3. It is
useful to temporarily distinguish the time spent at (H, L) and (L, H ), denoted by 7, and 71,5, for
clearer illustration. For state (H, L), under the MPE considered, it emerges when nature places the
corresponding shock at (H, H) (with rate 3). State (H, L) exits either when Firm 1 upgrades the
product (with rate f(c)) or when nature places another shock (with rate 3). In the steady state, the

3For joint profits, the two states provide the same joint profit and are considered as just one state.
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inflow and the outflow balance, implying that

Bre = [f(c) + Bl THL.
The expression of 77, is similar. Given that 75 + 771 = 1 and 77 = 751 + Tr.H,

fle)+8 28

= fo+3s ™ T

This gives the distribution of time spent at each state in the long-run steady state. In terms of
upgrading frequency, notice that at state (H, H), there are no upgrades. At (H,L) and (L, H),
either the corresponding firm upgrade according to f(c), or both firm upgrades when nature
places a shock that the state hits (L, L). The upgrading frequency, or in other words, the frequency
at which the firms pay the cost is

26 [f(c) +26]

ru [f(e) +26] 4+ i [f(e) +26] = =

The firms’ long-run average joint profit is then

(. ) + w8, 1] 4 S5 (1) + ma1)) 5 2 -2
HT,_/ ﬁ,_/

We can also calculate the distribution and the joint profits under the MPE in Proposition 4. The

results are summarized as follows.

I Proposition 7. For 0 < ¢ < ¢, firms’ long-run average joint profit is increasing in c.

The proof is in Appendix B. To see the intuition, recall that as c increases, the mixing rate/prob-
ability decreases so as to provide sufficient upgrading incentives. As the upgrading becomes less
frequent, firms incur upgrading costs less often, and 77 increases, allowing them to enjoy positive
profits for longer durations. Both factors contribute to higher joint payoffs. However, observe that
the joint profits will be 0 once ¢ > ¢ since both firms in the long run stay at (L, L), and the profits
are exhausted by Bertrand competition. Figure 5 shows the time distribution and joint profits as a

function of c.

Although the two MPE in Proposition 3 and Proposition 4 are technically dif-
ferent, they can be and should be considered as a unified equilibrium structure. First, the
driving force of the upgrading dynamics is to provide upgrading incentives that match
the upgrading costs through the appropriate structuring of upgrading behavior. In turn,
the resulting profiles are continuous, coinciding at ¢ = ¢. Second, the equilibrium out-

comes sexhibit continuous trends in upgrading frequency, social efficiency, steady-state
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FiGure 5 Time Distribution and Joint Profits

Left: 75 as a function of c. Right: Joint profit as a function of c¢. Calculatedatr =1, =1,a = 0.5.

time distribution, and long-run average joint profits. For these reasons, we will hereafter

use the term direct competition to refer to these two MPE.
4 Interactions of Vertical and Horizontal Differentiation

This section studies the general model that features both vertical and horizontal differentiation.

We again start from the social planner benchmark.
4.1 The Social Planner Benchmark

Unlike the case with vertical differentiation only, when & > 0 the social planner now has an
incentive to duplicate high-quality products. Consider the upgrade decision at state (go,q1) =
(H, L). Consumers near Firm 1 settle for the low-quality product, while those closer to the middle
incur a high traveling cost to purchase from Firm 0. If the planner upgrades to (H, H ), consumers
near Firm 1 enjoy higher quality, and consumers located at or beyond 1/2 can switch to Firm 1 to
obtain a higher-quality product with a lower travel cost. Thus the social planner prefers to upgrade

at (H, L) and duplicate high-quality products, at least when upgrading costs are sufficiently low.

Proposition 8. Define
(k(2 — k) — 202 . k
MeTh) T AT f i
2k(B + 1) Hasg
4—4a—k k
sp_ )2 if — < -
Ch B+r) 1f2\04<1 k,
(1—a)?+2k(1 —a) :
fl—k<a.
\ 4k(B +1) ' hso
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and

k
v ifa<1-k,
P _ 4(ﬁ+r)2
—(1-a)*+2k(1-a) :
fl1-k<o.
(B +7) i k<o

The social planner’s optimal policy is:
* Never upgrade if ¢ > ¢}};
* Upgrade one product at («, a) and do not upgrade elsewhere if ¢}’ < ¢ < ¢};
* Always upgrade when possible if 0 < ¢ < ¢}’

The proof is in Appendix C. Proposition 8 shows that the social planner retains the basic
structure of the optimal policy in Proposition 1, with the addition of an always-upgrading region

when c is sufficiently low.

Notice that there are policies that are never optimal, as shown in Proposition 8. In general,
the planner has six pure policy options:'* at (L, L), upgrade none, one, or both products; and at
(H,L)/(L, H), upgrade the low-quality product. The policies that are never optimal are internally
inconsistent. For example, consider the policy that upgrades both products at (L, L) but not at
(H,L). Upgrading at (L, L) implies that the marginal benefit of a second high-quality product
exceeds the cost, which contradicts the choice not to upgrade at (H, L). Similarly, upgrading one
product at (L, L) and also at (H, L) is internally inconsistent: upgrading only one productat (L, L)
suggests that the marginal benefit of a second high-quality product is below cost, while upgrading
at (H, L) suggests the opposite.

To see why upgrading at (H, L) but not at (L, L) is never optimal, suppose the gain in social
welfare from upgrading (L, L) to (H, H) is 2A. If the upgrade is step-by-step, the intermediate
state is (H, L). If the left-half consumers always purchase from Firm 0 and the right-half from Firm
1, the gain from each step must be A. But consumers switch to the higher-welfare firm: upgrading
Firm 0’s product first draws some consumers from Firm 1, so the gain from (L, L) to (H, L) is
strictly larger than A."> Thus, if the planner is willing to upgrade from (H, L) to (H, H), she must
also be willing to upgrade from (L, L) to (H, H).

Overall, the social planner’s optimal policy is summarized in Figure 6. Adding horizontal
differentiation preserves the general structure of the policy: upgrading frequency remains mono-

tonically decreasing in ¢, with the addition of an always-upgrading region when costs are low.

1Since this is the social planner’s decision problem, it suffices to consider pure policy options. As before, any

seemingly asymmetric policy has an outcome-equivalent symmetric version via randomization.
15Recall that k is not too large so that middle consumers purchase if the state is (H, H).
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Ficure 6 The Social Planner’s Optimal Policy

4.2 Substitution and Complement between Differentiation

We now consider the quality evolution under firms” duopoly competition. It can be verified
that the three MPE in Lemma 2, Proposition 3, and Proposition 4 continue to exist as k increases,
although there are changes under positive k. First, the MPE in Proposition 3 can only be sustained
for costs bounded away from 0. In particular, there exists a c3 > 0 such that this MPE exists only if
¢ > c3. When 0 < ¢ < c3, there are new MPE emerging due to the horizontal differentiation. This
is discussed in subsection 4.3. Second, the mixing behaviors of the firms under the existing MPE
also change due to the substitution and complementary relations between the two dimensions
of differentiation, which will be elaborated here. In what follows, we continue to use ¢ and ¢ to
denote the boundaries between the MPE, although it should be understood that ¢ and ¢ are defined
differently to adapt to the positive k.

As a preparation, recall that firms now can get positive stage payoffs in multiple states instead
of just the quality-leader state. In particular, both firms receive positive profits at state (H, H),
and the profits increase as k increases, while the profits of the quality leader firm at (H, L)/ (L, H)

decreases when « is small. Still, firms still benefit more from being the quality leader. That is,
7TO(L7 H) < TF[)(L, L) < 7TO('H'v H) < 7T0<H7 L)

To simplify the analysis, we restrict attention to 0 < £ < 2/9 and 0 < o < 1 — 3k in this
subsection. In this case, the quality shock is meaningful so that « is indeed small enough to satisfy
the monotonicity of the stage profits stated above. This is the more interesting and meaningful
case: For larger «, firms under state (H, L)/ (L, H) still split the market, only not from exactly the
middle. The competition still proceeds in familiar fashion, and the shock only has quantitative
rather than qualitative effects. Under smaller «, shocks from nature are more significant and firms
have to cope with the shocks with behaviors that are qualitatively different, which shows, for

example, in how the stage payoff changes in k.
Under this parameter range, there exists ¢ such that

¢ The two dimensions of differentiation exhibit substitution relations in equilibria if c3 < ¢ < ¢.
¢ The two dimensions of differentiation exhibit complementary relations in equilibria if ¢ <

c < c3.

Formally,
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Theorem 9. Suppose that 0 < k < 2/9and 0 < o < 1 — 3k. There exists ¢ € (c3, ¢) such that

for a given upgrading cost ¢,

Otp . R 1B : .
Dk >0ifc € (c3,¢) and v <0ifc e (¢,¢).

And 07p/0k = O only at c = ¢.

The proof is in Appendix C. To interpret the result, recall that £ measures the degree of
horizontal differentiation. When k increases, the horizontal differentiation increases. As discussed
in the previous section, 7 is the time spent at the balanced (H, H) state, where there is no vertical
differentiation. Thus, an increase in 75 corresponds to a decrease in vertical differentiation. In turn,
if 75 increases in k, this means the vertical differentiation is reduced when there is more horizontal

differentiation, hence the two dimensions of differentiation exhibit substitution relations.

To trace out the driving force of the substitution/complementary relations, consider how the
upgrading incentive changes as k increases. Unlike the case where horizontal differentiation
is absent, both (H, H) and (H, L) states'® can provide upgrading incentives for Firm 0. If the
mixing rate/probability does not change, so that 75 does not change, the upgrading incentives in
general will change given that 7o(H, L) decreases in k while mo(H, H) increases. Since c is fixed, the
upgrading incentives then must be restored by adjusting the distribution between 75 and 77, which
changes the mixing rate/probability. This then manifests as the substitution or complementary
relations.

More specifically, when c is close to c3, the mixing rate at (H, L)/(L, H) is higher, and 75 is
significantly larger than 77. (For a more concrete observation, see Figure 5.) This means most
of the upgrading incentives are provided by mo(H, H). As k increases, this also increases, and
the upgrading incentives are larger than needed. To restore the upgrading incentives, firms must
increase the time spent at the state with lower incentive provision. Therefore, g must be further
enlarged since mo(H, L) > mo(H, H)."” This is shown in Panel (a) of Figure 7.

When cis closer to ¢, 77 is significantly larger, and the upgrading incentive is provided mainly
by the inbalanced quality-leader state. As k increases, the overall incentive decreases. In turn, 77
must be further enlarged since my(H, L) > mo(H, H), to restore the upgrading incentives. This is
shown in Panel (b) of Figure 7.

More fundamentally, when the upgrading cost is lower, firms compete more aggressively, and
they are more likely to stay in the comparable quality levels. If the market power increases, firms

are able to charge a higher price and earn a higher profit. This in turn fuels quality competition,

16Under the parameter setting of Theorem 9, Firm 0 still gets flow payoff 0 at state (L, H).
”Note that the direction of the change of the incentives are determined by d7;(qo, g1)/0k, while the overall size of

incentives depend on 7;(qo, g1)-
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Ficure 7 Interactions of Differentiation and Upgrading Incentives
The width of each bar is the corresponding time distribution. The height of each bar represents the upgrading
incentive, or the benefits from upgrading. The total gray area represents the overall incentive of upgrading. The
dashed lines, borders, and arrows show how the stage payoffs change as k increases. For example, as k increases,
mo(H, H) increases, and it is represented by the darker area within the dashed boarder. The solid arrow shows how

the time distributions change as k increases.

making it even harder to differentiate with each other. When the upgrading cost is higher, a
quality leader is more likely to emerge and dominates the market. If the market power increases,
the weaker firm has a stronger incentive to enter, and the leader must give up more profits to
maintain the market dominance. This in turn dampens the competitions in quality, and occasional
quality competition occurs only when both firms are at low quality. Therefore, a quality leader is

more likely to emerge instead of both upgrading to the high-quality level.
4.3 Upgrade Deterrence

We now address the new MPE that exist when ¢ < ¢3. Since firms have market powers, and the
balanced state (H, H) also provides profit gains compared with the quality-follower state (L, H),
firms can sustain an always-upgrading-when-possible MPE.

Proposition 10. Always upgrading when possible is a limit of a symmetric MPE if

c< 71-O(fLI{) _WO(Lu-H) = c3.
r+p

The proof, which involves solving the value function and ruling out profitable deviations, is
relatively straightforward and hence omitted. Instead, notice that the condition in Proposition 10 is
exactly the no-profitable-deviation condition at (L, H). The RHS is the present value of upgrading

gain, and if the upgrading cost is lower, firms prefer to upgrade at the quality-follower state.
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Interestingly, there is not a second condition that corresponds to the no-profitable-deviation
condition at (L, L). The reason is easy to see at the limit, where A — 0. Given that Firm 1 always
upgrades (at least at (L, L)), if Firm 0 follows the strategy and upgrades, they move to (H, H)
immediately. If Firm 0 does not upgrade at (L, L), they move to (L, H) instead. But then the
condition in Proposition 10 indicates that Firm 0 should upgrade at (L, H), leading to (H, H) as
well. Given A — 0, the two paths have no payoff difference. For this reason, the no-profitable-
deviation condition at (L, L) is always satisfied. This is an example of self-fulfilling: both firms
believe that the opponent will upgrade at (L, L), which renders (L, L) not on-path, so that they
might as well upgrade at (L, L).

Such self-fulfilling features usually indicate equilibrium multiplicity. Indeed, there are addi-

tional MPE that overlaps with the always-upgrading MPE. Define

= 7"-O(IT[?-E[) _WO(L’L)
b r+ 3

H,H)—

and Cy = FQ(L, L) - FQ(L, H) y

,
r+p o + 5

and it is easy to see that 0 < ¢; < 2 < c3.

Proposition 11. The following is the limit of a symmetric MPE if ¢; < ¢ < ¢a:

e Firm i does not upgrade at (L, L).

* Firm i upgrades for sure at (L, H).
The following is the limit of a symmetric MPE if c5 < ¢ < ¢3:

e Firm i does not upgrade at (L, L).

e Firm i upgrades at (L, H) with a rate i(c), where

(B+7)[mo(H,H)(B + 1) + Bmo(H, L)]

(B+r)2c—mo(H,H)(B+r) + mo(L, H)r + Bmo(L, L)

(B +7)[mo(L, H)(B +7) + Bro(L, L) + (B +7)(28 + 7)(]
(B+r)2c—mo(H,H)(B+ 1)+ mo(L, H)r + fmo(L, L)

h(c) =

Moreover, h(c) is decreasing in c. Also, in the corresponding cost range, the MPE here yield

higher joint profits than the always-upgrading MPE.

The proof is in Appendix C. Instead of utilizing the low costs and always upgrading, firms
play “upgrade deterrence” in these MPE. Consider the first MPE in Proposition 11. Both firms
“agree” to stay at the low quality level as long as no one upgrades. However, once a firm breaks
the agreement and upgrades, they play a quality war forever by always upgrading since (L, L)
is reached with 0 probability. To support this MPE, the upgrading cost cannot be too low. In
particular, ¢ > ¢y, so that quality war is a meaningful deterrence. When ¢ < ¢, the upgrading
incentive provided by moving from (L, L) to (H, H) is already large enough compared with the

upgrading cost, and no deterrence can sustain (L, L). The upgrading cost also cannot be too high,
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since punishment for upgrading at (L, L) is also costly, and the deterrence is not credible when the

cost is too high. At ¢ = ¢, the pure quality war can just barely be sustained.

As the upgrading cost further increases, the punishment becomes too costly, and the firms
switch to weaker punishment, using mixed upgrading strategies. Unlike the pure-punishment
MPE above in which the quality state is maintained at (/, H) once a quality war starts, the steady
state under mixed-punishment MPE is (L, L): in a punishment phase such as (H, L), given enough
time, nature will eventually place a shock before Firm 1 upgrades, restoring the absorbing state
(L, L). Nevertheless, this weaker punishment is just sufficient for the deterrence as the upgrading
costitself is higher so that deviating to upgrade is less profitable. Atc = c3, even the mixed-strategy

punishment becomes too costly to sustain.

We call the MPE in Proposition 11 upgrade deterrence. Just as the two MPE in the direct
competition case, although they are technically two different MPE, the driving forces are similar.
These two equilibria are also similar to the trigger punishment in repeated games: When ¢; < ¢ <
c2, the MPE is similar to grim trigger: a deviation leads to quality war forever. When c; < ¢ < c3,
they switch to a punishment with finite length in expectation — since at (L, H)/(H, L), a shock
will hit eventually earlier than an upgrade. However, it should be clarified that such equilibria
are still MPE, and the strategic incentives in these MPE are not the same as the incentives in
repeated games. In repeated games, a punishment is based on the sunk behaviors that are not
payoff-relevant. For example, in a repeated prisoners” dilemma, players engage in punishment
if a player deviates to defect in any history. But the deviation itself does not change the payoffs
of the current and future games. If the players have sufficient beliefs that no one will deviate
again, the best option is to play cooperation instead of punishment. This is not the case here. By
deviating to upgrading at (L, L), the deviation firm changes the payoff relevant state, namely, its
quality. The incentives of the firms thereafter are still based on payoff-relevant states only instead
of punishment due to any payoff-irrelevant history. In other words, firms play quality wars not to
punish the deviations. Instead, they play quality wars because it is the best option since they are
already there, even if they both believe for sure that no one would upgrade if they could go back
to (L, L) now.

Such equilibria can also exist under & = 0, but only trivially, as they require ¢ = 0 to be
sustained. To see this, consider the grim-trigger profile. There is no profitable deviation at (L, H)
or (H, L) since the game is played exactly the same as always upgrading. At (L, L), no upgrade
leads to (L, L) forever, in which case both firms yield payoff 0. If Firm 0 deviate and upgrades,
the state is (H, H) forever, and the payoff is still 0. Given the upgrade is free, Firm 0 is exactly
indifferent between upgrading or not and might as well choose not to upgrade.’® This is rather

delicate and cannot be maintained for ¢ > 0. It is the existence of market power that allows

BUnder k£ = 0 and ¢ = 0, the finite-punishment MPE converges to the grim-trigger MPE.
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deterrence-type equilibria to exist under non-trivial parameter values: the upgrading incentives
from (L, L) to (H, H) are smaller than the upgrading incentives from (L, H) to (H, H), which
creates a non-trivial range of ¢ to support grim-trigger or finite-punishment MPE.

Summary of MPE. It turns out that the six MPE (Lemma 2, Proposition 3, Proposition 4,
Proposition 10, Proposition 11) constitutes the joint-profit-maximizing symmetric MPE, which is
summarized in Figure 8. Although there are many cases, there are only two meaningful types (if
we do not count the relatively obvious and less interesting always-upgrading and never-upgrading
MPE at the extreme cost levels): upgrade deterrence, by either a grim trigger strategy or finite-
length punishment strategy, and direct competitions, by playing appropriate mixed strategies to

control the opponents” upgrading incentives.

Always Upgrading Direct Never

Upgrade Deterrence Competition Upgrade
: : : : i c
C1 C2 C3 ¢ c

FiGure 8 The Summary of Joint-Profit-Maximizing Symmetric MPE

There is another symmetric MPE, under which both firms engage in probabilistic mixing at
(L, L) while upgrade for sure at (H, L)/(L, H). Although this is a technically different MPE, it is
outcome equivalent to always upgrading in the limit. We leave the details to Appendix C, where

we also compare the joint profits for the MPE in Figure 8 in case of multiplicity.

It can be of interest regarding how the bounds above changes as parameters r, 3 or k£ change.
Regarding r and /3 on bounds ¢y, c3 and ¢, the effect is straightforward: as r or 3 increases, all three
bounds decreases. A larger discount or a higher shock rate means the upgrading today is relatively
more expensive. When the firms discount the future more, the flow profits from future are lower
compared with the current cost of upgrading. When the shock rate is higher, the expected duration
of the product maintaining high quality after an upgrade is shorter, leading to again lower profits

per upgrade. In turn, upgrading regions shrink, and no-upgrading region expands.

For k, under the condition in Theorem 9, both ¢; and c3 increases in k, while ¢ decreases in k.
To see why this is the case, first consider c slightly above c;, where the firms in the upgrading-
deterrence equilibria are tempted to deviate to (H, H). As k increases, the flow payoff at (H, H) is
higher, so that upgrading deterrence is harder to be maintained, leading to the increase in c;. For
c slightly below c¢3, the increased flow payoff at (H, H) means that firms can afford more costly
quality war, leading to the increase in c3. However, at ¢ below ¢ where firms have low upgrading
frequency and mostly sustain the leader-follower states, the flow payoff at (H, L) (or (L, H)) is now

lower, offering lower upgrading incentives, so that firms stop upgrading even sooner, leading to
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lower é.
4.4 Investment Efficiency

As in the case of k = 0, the firms in general do not invest in quality in an efficient fashion.
Nevertheless, the firms can now under-invest, which is not present when k£ = 0. As before, we
consider the long-run state distributions. There is one complication though — the grim-trigger
MPE is not ergodic, since its steady state depends on the initial state, no matter how far into the
future. For this reason, this profile is not formally considered in the efficiency and joint profit
analysis. Still, this may not be a serious issue. Since the steady state is either (H, H) or (L, L), the
steady state of this MPE effectively aligns with that of the always-upgrading equilibrium or with

that of the finite-length punishment equilibrium."

It should also be clear that the finite-length punishment will have (L, L) as the steady state.
This should be straightforward if the initial state is (L, L). When the initial state is not (L, L), given
long enough time, nature eventually will place a shock sooner than a firm upgrading its product,

and the state transitions to (L, L), which is absorbing.

Corollary 12. Assume that 0 < k£ < 2/9 and 0 < a < 1 — 3k. The firms over-upgrade if

c3 < ¢ < ¢. There also exist costs ¢ < c3 and ¢ > ¢ such that firms under-upgrade.

The proof is in Appendix C, which is simply showing that Cst < cgand ¢ < ¢}. The intuition
of the over-upgrading region is the same: the competition between the firms enforces too many
investments. What makes this result a little surprising is that the efficiency itself is not monotone:
under-upgrading can happen at lower and higher cost levels, though driven by different forces.
At the cost level just below c3, firms under-upgrade due to the de facto collusion achieved by the
upgrading deterrence. Firms do not upgrade as frequently as the social planner because the quality
war is too costly. In a way, under-upgrading is possible only because the potential competitions
are too severe. At the high cost level above ¢, firms do not upgrade and there is no dynamic quality
competition. Firms stop upgrading sooner than the social planner because they do not internalize
the consumer surplus. While the social planner find it still worth upgrading considering the
social surplus, the joint profits are not sufficient to cover the upgrading cost to maintain quality
competitions.

Notice that the existence of both under-upgrading regions requires horizontal differentiation.

In the low-cost region where under-upgrading is generated by upgrading deterrence, deterrence
relies on the fact that the flow gain from (L, H) to (H, H) strictly exceeds that from (L, L) to (H, H),

“Note that (H, H) may be a more reasonable choice for the steady state as it is stable under trembling. Any trembles
at (L, L) will lead to (H, H) due to the grim trigger strategy.
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which does not hold if there is no horizontal differentiation. In the high-cost region where under-
upgrading is generated by failure of internalizing consumer surplus, firms competition reallocate

consumers in an inefficient way only when there is horizontal differentiation.
4.5 Firms’ Long-Run Average Joint Profits

While the firms’ long-run average joint profits are increasing in cwhen k£ = 0 (until cis too large),
the joint profits under £ > 0 can be non-monotonic in two regions. First, when c is sufficiently
small and the MPE is firms always upgrading, the joint profit is decreasing in c. Second, when ¢
is close to ¢ and ¢ < ¢, the joint profit is decreasing in c if 3 is large.

To understand the reasons, note that increasing c in general has two effects. The direct effect is
the cost effect; that is, firms must pay higher costs to upgrade the products, which decreases the
joint profits. There is also an indirect competition effect: Higher costs dampen the competitions
between the firms, a firm is more likely to become quality leader and enjoy higher profits, and the
firms also pay the upgrading cost less frequently. This increases the joint profits.

When cis small and firms always upgrading, only the direct effect is present. As cis sufficiently
low, firms always upgrade, and the upgrade frequency is determined by the shock frequency alone.
Slightly increasing c¢ does not dampen the competitions (for any interior c). In the case of direct
competition, the indirect competition effect usually dominates, which is indeed the case when
k = 0. When k > 0, the indirect effect may be weakened when c is close to ¢, where the two
dimensions of differentiation are complementary. As k increases, 7 decreases, and firms stay at
imbalanced quality states for a longer period. In such states, whenever a shock happens, at least
one firm needs to upgrade. If shocks occur frequently enough, the direct cost effect dominates
the indirect competition effect, leading to decreasing joint profits. Figure 9 gives an example of

long-run average joint profit that features two decreasing regions.

0.08

0.06

0.02 0.04 0.06 0.08 0.10 0.12

Ficure 9 Long-Run Average Joint Profits
Drawn under r = 1, 8 = 10, = 0.12, k = 0.15. The vertical axis is the long-run average joint profit. The two regions

where the joint profit decreases in c is shaded.
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5 Extensions

This section considers an extension where the shocks are no longer independent. Instead, if
nature places a shock on one firm, it is more likely to place a shock on the other firm as well. This
can be reasonable in the real world: if the fryer breaks at one restaurant, removing fries from the
restaurant’s menu, the consumers may order more fries from competitors, which can overload and
possibly break the fryers of competitors.

More geneally, a symmetric correlation between two shocks as shown in Table 1 is assumed.
Specifically, in each period, the shocks keep the same marginal distribution, i.e., a shock happens
with probability b, but now the shocks are correlated with correlation coefficient p € [0, 1]. Note
that this correlation is only in effect at state (H, H). At (H, L) or (L, H), only one product can be
shocked, and the shock probability is still the marginal probability b.

TaBLe 1 The Distribution of Correlated Shocks

Shock to Firm 1 No Shock to Firm 1

Shock to Firm 0 b2 + pb(1 — b) b(1 —b)(1—p)
No Shock to Firm 0 b(1 —b)(1 —p) (1 —b)% + pb(1 — b)

Also, the main concern of this section is to verify if the two major competition modes, upgrading
deterrence and direct competition, still hold under correlated shocks, and if so, how they changes
due to the correlation.?

As the results above mainly study the limiting behavior of the equilibria, it is worth mentioning
that p is assumed to be a constant as A — 0.2! If p — 0, there is no change from the result above.

We start with the two upgrading-deterrence equilibria.

Proposition 13. The two upgrading-deterrence MPE still exist for p € (0,1). Also,
* ¢1,c3 do not change with p.
® ¢, increases in p and coincides with c3 when p = 1.

® h(-) increases in p.

The proof is in Appendix E. For some intuitions, notice that correlated shocks make upgrading
deterrence more difficult. For the upgrading deterrence MPE with finite expected length (co <
¢ < c3), if the shocks are not correlated, (H, H) can only fall to (H,L) or (L,H) as A — 0. The
corresponding firms upgrade at such states with a rate and potentially extend the quality-war

2Tt is also straightforward to verify that the always-upgrading MPE and the never-upgrading MPE still exist under

the same range, and c; and ¢ do not change with p.
2'More generally, it at least needs to be assumed that p has a positive limit.
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phase. With correlated shocks, (H, H) can fall to (L, L) directly with positive probability. In
other words, the correlation has a restarting effect: it resets the quality levels to a balanced low-low
state, restarting the competition of the firms. Once the state reaches (L, L), the quality-war phase
terminates immediately for sure. Therefore, the correlation between shocks effectively reduces the
expected length of quality-war. In order to keep sufficient deterrence, firms then must upgrade
with a higherrate at (L, H) or (H, L). This reduces the payoff of the opponent by not only reducing
the expected duration spent at their preferred state, but also lowering the probability that a shock
arrives sooner than the upgrading at (L, H) or (H, L), which extends the expected duration of the
quality-war phase. In turn, as p increases, both ¢z and h(-) increase continuously in p, and at p = 1,

only the competition-trigger MPE survives.??

We next move to the direct-competition equilibria.

Proposition 14. The two direct-competition MPE still exist for p € (0,1). Also,
* c3, ¢ do not change with p.
e ¢ decreases in p and coincides with c¢3 when p = 1.

e f(-)and g(-) decrease in p.

The proofisin Appendix E. To understand this result, recall that the mixing rates or probabilities
need to provide correct upgrading incentives in direct-competition MPE. As the shocks become
more correlated, the expected durations at imbalanced (H, L) and (L, H) states are reduced. The
correlation again has the restarting effect, by reducing the firms” opportunities of becoming the
future quality leader. Since (H, L) and (L, H) states provide major upgrading incentives (especially
if k is small), mixing rates and probabilities must decrease to increase the expected duration at
the imbalanced states, compensating the loss from correlated shocks. As p — 1, the incentives
provided by such imbalanced states are smaller as such states are less likely to emerge. Whenp =1,
(H,L) and (L, H) are no longer on path, and the only way to provide upgrading incentives is to
reduce the upgrading probabilities at (L, L), so that the first direct-competition MPE disappears

Figure 10 summarizes the changes of MPE under correlated shocks.

While the discussion above focuses on positive correlations, the results and intuitions are
symmetric under negative correlations as well. The negative correlation increases the expected
durations of imbalanced (H, L) and (L, H) states, leading to the opposite adjustments as in Propo-

sition 13 and Proposition 14.

2We should note that “competition trigger” here is no longer competition trigger any more with positive correlations.
Again, (H, H) can transition into (L, L) directly, and firms stop upgrading at (L, L), so that the quality-war phase does
not necessarily last forever. We still keep the term “competition trigger” for consistency.
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Upgrading Deterrence Direct Competition

FiIcure 10 MPE with Correlated Shocks

The black arrows on the graph show how the MPE change as p increases.

6 Conclusion

This paper has examined how firms compete dynamically in quality and price in the presence of
horizontally heterogeneous consumers. We showed that horizontal differentiation can significantly

alter firms’ quality-investment behavior, joint profits, and social welfare.

More specifically, while investment frequency decreases monotonically with investment costs
when consumers are homogeneous, heterogeneous consumers enable upgrading deterrence, al-
lowing firms to sustain lower investment frequencies even when upgrading is relatively cheap.
When investment becomes more expensive, deterrence is no longer sustainable, and firms switch
to direct competition, in which the upgrading frequency once again declines with higher costs.
This non-monotonicity in upgrading frequency also creates non-monotonicity in investment effi-
ciency, leading to under-investment at both low and high cost levels. The quality evolution patterns

are robust under correlated quality shocks.

It is also further demonstrated that horizontal and vertical differentiation can exhibit substitu-
tion or complementarity depending on the cost of investment. Higher horizontal differentiation
can either fuel or dampen quality competition. When investment is inexpensive and firms tend
to have similar quality levels, stronger horizontal differentiation fuels competition by enhancing
market power. When investment is costly and firms are more vertically differentiated, stronger
horizontal differentiation dampens quality competition because maintaining a leadership position

becomes less profitable.

Future research could further explore dynamic competition along two dimensions by consid-
ering asymmetric firms, correlated quality shocks, or settings with more than two quality levels.
Since consumers are transient in our model, it would also be valuable to examine durable goods

markets where past consumers periodically return.
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A The stage game

A.1 The Social Planner

We first solve the social planner’s stage game.

Stage games (1,1) and (a,a). We consider (¢, q) for some generic ¢. If k is not too large,
consumers in [0, 1/2) purchase from firm 0, consumers in (1/2,1] purchase from firm 1, and the
consumer at 1/2 is indifferent. For the indifference consumer, she purchases if ¢ — (k/2) > 0, or

k < 2q. The social surplus is

=

3 k
2></(q—k‘:L‘)d1::q—.
0 4

Note that here we utilize the fact that the environment is symmetric.
If £ > 2q, some buyers in the middle chooses not to purchase. Let z be the location of the last

consumer who purchases from firm 0. Then,
q—kz=0 = z=

The social surplus is
9
2

2 q
2 x (¢ — kz)dx = —.

0 k
Stage game (1, ). There are three cases:
¢ Firm 0 and firm 1 split the market at some z* (and the whole market is covered).
¢ Firm 0 dominates the market.
e Firm 0 serves the consumers at location [0, z], firm 1 serves the consumers at location [z, 1],

and x < T.

Let’s consider the first case. The location z* of the indifference consumer is defined by

1 l1—«
— k=g — k(1 —2* = .
qo0 T Q1 ( ) = =z 2+ o

Itis clear that z* > 1/2,and 2* < 1if 1 — a < k, or @ > 1 — k. The indifference consumer gets

1 —
| gt = 1FOTF
2
This consumer gets nonnegative payoff if 1 + « > k, or @ > k — 1. Therefore, if a« > |1 — k|, the two
firms split the market at 2*. The social welfare is

a ! l4a (1-a)2 &
/0(l—ka?)dx—i—/x*[a—k(l—x)]dx— 5 + 1

The second case happens if 2* > 1, or 1 — o > k. To verify that firm 0 indeed dominates the

market, consider the consumer at location 1. Purchasing from firm 0 gets 1 — k. Since 1 — a > k,
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the consumer gets more than « (so that more than 0), which shows that firm 0 indeed dominates
the market. The social surplus is
1
/ (1—k:x)dx:1—ﬁ.
0 2
The last case happens if the consumer at z* has negative payoff. Formally, x = 1/k as we
defined above. For 7, it is defined by
a—k(l-7)=0 = f:l—%.
We need z < 7, which implies a < k — 1. Notice that this is indeed the condition for the consumer

at location x* gets negative payoff if purchasing. The social surplus is

Z ! 1+a?
/O(l—ka:)dx—i—/w[a—k(l—x)]dx: ok

A.2 Duopoly Firms

We first state the best responses of Firm 0, in terms Firm 1’s quality ¢; and price p;:

1. Ifqgr—p1 > k:
(@) Ifgo >3k +q —pi: BRo=pf =q0— a1 +p1 — k.
(b) If —k+q —p1 <q <q—p1+3k BRo=p5 = (g0 — q1 +p1+k)/2.
(c) If g0 < —k+q1 —p1: BRyis any price higher than gy — g1 + p1 — & so that firm 0 has zero

demand.

2. f0< ¢ —p1 < k:
(@) If go > 3k +q1 — p1: BRo=p§ =qo — q1 +p1 — k.
(b) If 3k — 3(q1 —p1) < qo <3k +q1 —p1: BRo=p§ = (0 —q1 + p1 + k)/2.
() If 2k — 2(q1 —p1) < qo <3k —3(q1 —p1): BRo=p{ =q0+q1 —p1 — k.
(d) If go < 2k —2(q1 —p1): BRo = p}! = q0/2.

3. If g —p1 <O
(@) If go = 2k: BRy = qo — k.
(b) If ¢1 < 2k: BRy = p}! = qo/2.

In general, there are four possible cases: (i) one firm dominates the market, (ii) two firms split
the market with FOC pricing, (iii) two firms split the market with corner solutions, and (iv) two
firms are separated small monopolists. Case (iii) may not be obvious: FOC pricing may not always
leave the middle consumer positive consumer surplus. If this happens, and the quality levels are
not too low, firms will still compete, since the profits of covering a larger market is still higher than
the profits of charging a higher price and losing some markets.

We can now use the best responses above to formulate the stage game equilibria. The cases

where the quality levels are the same are relatively easy and we state the result directly in Table 2.
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TaBLE 2 Stage Game Equilibria in (g, ¢)

Each Firm’s Price  Each Firm’s Profit

3k/2 < q k k)2
k<q<3k/2 q—(k/2) (¢/2) — (k/4)
q<k q/2 (¢%)/4k

Stage game (1, a). Since « € (0, 1), there are three possible cases in this subgame

¢ Firm 0 dominates the market.
¢ The two firms split the market. This includes two scenarios: the indifference consumer has
positive surplus, or the indifference consumer has zero surplus.

¢ The two firms leave some buyers not served.

We should note that it is impossible that firm 1 dominates the market, given that firm 0 has higher
quality. Also, it is not possible that for some z, consumers in [0, z] purchase from firm 0, and the
remaining consumers choose not to purchase. Here, firm 1 can always charge ¢ < « and attract

consumers close to 1 to purchase, which is a profitable deviation.

Let’s start from the case that firm 0 dominates the market. We argue that p; = 0 in such
equilibria. Since firm 0 dominates the market and ¢; = a > 0, we must be in Case 1(a) or Case
2(a) regarding firm 0’s best response, meaning that py = pOD (p1) = g0 — @1 + p1 — k. That is, the
consumer at location 1 is indifferent. Suppose that p; = 1 > 0. Given py = p{’(p1), firm 1 can
charge p; /2 instead, so that consumers closer to 1 will purchase from firm 1, leading to a positive
profit. This is a profitable deviation exists for any positive p;. Therefore, in any equilibrium that
firm 0 dominates the market, firm 1’s price p; must be 0. Then, following the best response function
of firm 0, firm 0 dominates the market if g — g1 = 1 — @ > 3k. Firm 0 charges 1 — o — k, which is
also firm 0’s equilibrium profit.

Next, consider the case that they split the market. Depending on parameters, we may be in
Cases 1(b), 2(b), or 2(c) of firm 0’s best response. For Cases 1(b) and 2(b), the indifference consumer
has (weakly) positive surplus, and firms chooses the FOC price. This leads to

00— q1

p():k—i-qT, and plzk—i—u.

3
Note thatif 1 —a > 3k, firm 0 will dominate the market. Therefore, the prices here are nonnegative.

The indifference consumer is

1 —
L (i

2 6k
Again, if 1 — o < 3k, 2* is between 1/2 and 1. And the indifference consumer gets

g +q — 3k

_ — k=
do — Po z 5
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Therefore, the indifference consumer has nonnegative surplus if 1 + « > 3k. In this case, both
firms split the market at z*.

If 1 + o < 3k, the firms cannot split the market at the FOC prices. We consider the last
case first, that is, the case where two firms act as monopolists. Firm 0 charges ¢p/2 and serves
consumers in [0, z], where z = ¢o/2k, while firm 1 charges ¢;/2 and serves consumers in [Z, 1],
where T = 1—(q1/2k). If both firms act as monopolists, we musthave x < 7, or gop+¢1 = 1+« < 2k.

Therefore, the case left is 2k < 1 + a < 3k. This is the case that two firms still split the market
at some z*, but this indifference consumer has zero surplus. In other words, firm 0’s best response
at Case 2(c), and similar for firm 1. We should note that there are many equilibria. Both firms are
now restricted by the same constraint — the boundary consumer must have zero consumer surplus,

which leads to multiplicity. It is possible to pick a natural equilibrium pricing profile

m—1 m—1)a
Po=——" andm:u,
m m

which take the uniform functional form of the equilibria at both boundaries, and the equilibrium
pricing is also continuous. Still, as the condition assumed in the paper, this case is not used in the

analysis.

We can summarize the results in Table 3.

TaBLE 3 Stage Game Equilibria in (1, «)

Po P1 Firm 0’s profit Firm 1’s profit
1—a>3k l—a—k 0 l—a—-k 0
11—« l—-a Bk+1-0a)? Bk+a-1)?2
1—a <3k, 1 > 3k k k—
“ T T3 3 18k 18k
k ka l+a—k (1+a—k)a?
1-—a<3k2k<1 3k 1-— —
“ Tas lta “ 1+a (14 «)? (14 «a)?
1 o 1 o?
—a< - - 7 -
l—a<3k 1+a<2k 5 5 1 1

B Proof of Results in Section 3

Proof of Proposition 1

If the social planner chooses not to upgrade at (L, L), the value function is

WN(L, L) = aA + e "2 Wi (o, a).
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This gives Wi (L, L) = «/r in the limit. If the social planner chooses to upgrade instead, the value

function is
Wy(L,L) = —c+e P4 [1dt + e AWy (1, o) + (1 - e_ﬁA) [odt + e AWy (a, o))
Wy (H,L) = e P2 [1dt + e "Wy (1, a)] +-<1-e—5A> [adt + e "2 Wy (a, a)]

In the limit, this gives

Wy (L, L) :lfw_

T r

The result is obtained by comparing Wy (L, L) and Wy (L,L). R
Proof of Lemma 2

For this and the next two proofs, we consider the more general k£ > 0 since such MPE also exist

under k£ > 0. The results under £ = 0 are obtained by setting k = 0 in the proofs.

Define

e—’/’A

§=e", b=1—¢P* and ¢= 1_7
T
In particular, £ acts as A, only it has discount baked in.
Also, notice that firms always have no action at (H, H), so that the value function at (H, H) is
always the same.
+b(1 — b)(mo(L, H)E + 6Vo(L, H)) (2)
+ b7 (mo(L, L) + 6Vo(L, L)).
In case that firms never upgrades, the remaining value functions of Firm 0 are
Vo(H, L) = (1 = b)(mo(H, L) + 0Vo(H, L)) + b(mo(L, L)§ + 6Vo(L, L)),
Vo(L, H) = (1 = b)(mo(L, H)§ + 6Vo(L, H)) + b(mo(L, L)§ + 6Vo(L, L)),
Vo(L, L) = mo(L, L)E + 6Vo(L, L),
Since this is a symmetric profile, it is sufficient to consider firm 0 only. We omit the solutions of

the value functions as they are usually too long (by including many higher order terms).

No profitable deviations at (L, H) means
VE)(LvH) - [—C—I— ‘/E)(Hv H)] > 07
which isjust the application of one-shot deviation principle. Substitute the value function solutions
to the LHS, then take the limit to get

28%¢ + cr? + 38cr — mo(H, H)(B + 1) — Bmo(H, L) + mo(L, H)(B + ) + Bmo(L, L)
(B +7)(26 +7) ’
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so that we need

(WO(H7 H) - TrU(La H))(B + r) + /B(WO(Hv L) - TrU(L’ L)) )

28+r 28+ ®)

c(B+r)>
No profitable deviations at (L, L) means
Vo(L, L) = [=¢+ Vo(H, L)] > 0.
The procedure of simplication is the same, and we acquire the condition
c(r+pB) >my(H,L) —mo(L, L).

Notice that the RHS is larger than the RHS of (3), so that this is the condition needed. In particular,
notice that this gives ¢ = [mo(H, L) — mo(L, L)]/(r + B). It is also easy to verify that the value

functions are always positive under this condition. W
Proof of Proposition 3

Let x}, be the upgrade probability of Firm 1. Since Firm 0 is indifferent between upgrading or
not at (L, H), we can first assume Firm 0 does not upgrade at (L, H) to solve the value function,
then use the indifference condition to solve for xy,.

Recall that Vy(H, H) is given in (2). The value remaining functions are

Vo(H, L) = xpVo(H, H) + (1 — zp) [(1 — b)(mo(H, L)§ + 6Vo(H, L)) 4 b(mo(L, L)§ + 6Vo(L, L))]
VO(LvH) = (1 - b)(ﬂ-O(L7H)§ + 5V0(L7H)) + b(ﬂ-O(LvL)f + 5VO(LaL))>
Vo(L,L) = —c+ Vo(H, H).

And the indifference condition is
Vo(L, H) = —c+ Vo(H, H).

This gives the expression of zj,. (The exact expression contains many terms due to the discrete-time
setup and is omitted.) Substitute this back to the value functions, we get the expression of the
value functions under the equilibrium. In the limit, x;, — 0, so that it sufficient to check that the
limit of x, /t,

—2B% — cr? — 3Ber + mo(H, H)(B+r) + Bro(H, L) — mo(L, H)(28 + 1)
C(/B +T) - 7I-0(-[{7-[?[) +7T0(L7H)

is positive to ensure zj, is a well-defined probability when A is sufficiently small. This is one of
the conditions to establish MPE. The other two conditions are no-profitable deviation condition,
but they are most trivial here. Notice that the incentives of upgrading at (L, L) and (L, H) are the
same, which reduces the two conditions to just one and is guaranteed by the indifference condition.

The same upgrading incentive does not rely on k = 0. To see this:
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* At (L, L), if Firm 0 upgrades, the state before nature’s decision is (H, H). If Firm 0 does not
upgrade, Firm 1 upgrades, and the state before nature’s decision is (L, H).
* At (L, H), if Firm 0 upgrades, the state before nature’s decision is (H, H). If Firm 0 does not
upgrade, Firm 1 does not have any action, and the state before nature’s decision is (L, H).
Since the interim states before nature’s shock(s) are the same, the distributions of states after
nature’s decision are also the same, meaning that the stage payoffs and continuation states are the

same, which completely aligns upgrading incentives.

Therefore, it suffices to consider that z,/t has a positive limit, which requires

H H)(B+r)  Bm(H, L)
20+ 2847

ro(H, H) — mo(L, H) < (B + 1) < T —o(L,H). |

Proof of Proposition 4

The idea is similar to the proof of Proposition 3: start by assuming that Firm 1 mixes at (L, L)
with probability z;. Formulate the value functions under the assumption that Firm 0 does not

upgrade. The value functions are

Vo(H, L) = (1 — b)(mo(H, L)& + 6V (H, L)) + (oL, L)é + 6Vo(L, 1),
Vo(L, H) = (1 — b)(mo(L, H)E + 6Vo(L, H)) + b(mo(L, L)€ + 6V (L, L)),
Vb(L7 L) = xl‘/O(Lv H) + (1 - xl)(ﬂ-O(La L)f + 5‘/0([/7[’))

The indifference condition is
Vo(L,L) = —c+x;Vo(H,H) + (1 — x;)Vo(H, L).

This gives x;.2 After taking the limit,

(268 4+ r)(—c(B+ 1)+ mo(H, L) — mo(L, H))
(mo(H, L) — mo(H, H))(B + 1)

Observe that z; does not converge to 0, so that the strategy is a probabilistic mixing instead of rate

mixing. This also means the limit must be between 0 and 1. This gives

Wo(H,H)(,B+T) BWO(HvL)

Btr 53 tr —7o(L, H) < e(B+7r) <mo(H, L) — mo(L, H).

There is no profitable deviation at (L, L) due to the indifference condition. At (L, H), the no
profitable deviation is that
Vo(L,H) — (—c+ Vo(H,H)) > 0.

BTechnically, this is a quadratic equation of x; and has two solutions. Nevertheless, the other solution is 0.
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After taking the limit, this simplifies to

WO(H7H)(B+T) + /BWO(I_LL)
28 +r 26 +r

Therefore, the profile is an MPE in the limit if

mo(H,H)(B+71) Bro(H, L)
208 +r 208 +r

—mo(L,H) < c(B+r).

— 7o(L, H) < c(B+7) < mo(H,L) — mo(L, H). W

Proof of Theorem 5

This is shown by exhausting all possibilities of symmetric MPE. Here, we discuss the pure
strategy symmetric profiles only and leaving the mixed strategy symmetric profiles to online
appendix so that the proof is not overly long.

As we have discussed after Theorem 5, there is no always-upgrading MPE. Next, consider that
both firms upgrade at (L, L) butnot at (H, L)/(L, H). It can be verified that the limits of the value

functions of Firm 0 are

Vo(H, H) = _W’

Vo(H.L) = af? + 3afr + ar? +f(ﬁ;c+t)3£;cr+;)52 + Ber? — 3Br — 7“27
Vo(L, ) =~ 2% : i)ﬁécg - f; +ger®

VoL, 1) = -0 252?(; ;ici)— B+ cr?

We can then verify that the two no-profitable-deviation conditions result to the direct opposite

signs. The only c that maintain this MPE is

B—ap
B+r)268+7r)

but this is the cost level at the boundary of the two MPE in Proposition 3 and Proposition 4, and

CcC =

this is exactly the limiting MPE at the boundary.

We have also discussed the upgrading deterrence MPE after Theorem 5, which also only exists

at ¢ = 0. The final pure symmetric profile is always upgrading, which is covered in Lemma 2. W
Proof of Proposition 7

We have shown the calculation of joint profits under the MPE in Proposition 3 before Proposi-

tion 7. Substitute flow payoffs and mixing rates into (1), the joint profit is

2Bcr(—a+c(B+r)+1)
Bt Bt (B —17)
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We now consider the MPE in Proposition 4. Let

g(e)(1 = g(c))
29(c)(1 = 9()) + g%(c)

be the probability that the realized outcome is a quality differentiated state. The state transition

y(e) =

must satisfy
Bt + By(c)tea = [B(1 - 2y(c)) + By(c)] ThL-

And the expression regarding 71,5 is symmetric. This gives

1 —2y(c) 1
= d ) ——
B 3 2y(c)’ an THL = TLH 3— 2y(c)

The upgrading cost is paid at rate
Blrar +1om) [y(e) +y(e) +2(1 = 2y(c))].-

Together, we get the joint profit

2(1 — a)r(a—c(B+71)—1)
26(a — fc—1) +3r(a — fc—1) —cr?’

The remaining part is to verify that both joint profits are increasing in c and is continuous at the

boundary, which are just algebra and omitted here. W

C Proof of Results in Section 4

Proof of Proposition 8

We show the case that 0 < a < k/2. For the case that « is larger, the method is the same. The
only change is the stage social surplus at (L, L) and (L, H), as shown in Appendix A.

Consider the never-upgrading policy. The social planner’s value function is formulated in the

similar fashion. For example,

W(H,H) = (1—b)?[w(H,H)+ W (H, H)] + 2b(1 — b) [w(H, L)¢ + §W (H, L)]
+b? [w(L, L)¢ + W (L, L)].

At (L, L), no profitable deviation to (H, L) requires
W(L,L)— (—c+W(H,L)) >0,
which, in the limit, simplifies to

—2a2 — k2 + 2k

©Z k(BN
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Similarly, no profitable deviation to (H, H) requires, in the limit,

—4a2(38 +r) + Bk(12 — 5k) — (k — 4)kr
” 8k (282 + 2 + 367)

At (H, L), no profitable deviation to (H, H) requires, in the limit,

—402B + k2 (r — B) + 4Bk
Ak(B+r)(28+71)

All three conditions must be satisfied, and the RHS of the three conditions need to be compared. It
turns out the the RHS of the first condition is the largest, which means it is the condition needed.

The procedure for the other policies are similar. Here, we state the limit of the value functions
under the other two optimal policies. For the policy that upgrades one product at (L, L) and does
not upgrade at (H, L), the value functions W (H, H), W(H, L), and W (L, L) in the limits are

48(2Bc+k —2)+ (k—4)r 2Bc+k —2 q 2e(f+71)+ k-2
B 4r(28 + 1) T 2r o an B 2r '

For the always upgrading policy, the same value functions, in the limits, are

8Bc+k—4  4c(2B+7)+k—4 and _8c(Btr)+k—4

4r ’ 4r ’ 4r '
For each policy, the cost range is determine by three no-profitable-deviation conditions at two states,
just as the argument above. We also checked the policies that are not consistent, as mentioned

after Proposition 8, and they are indeed never optimal. W
Proof of Theorem 9

The expressions of the time distributions and rate of upgrading costs are shown in the proof
of Proposition 7. We here state the time distributions and long-run joint profits directly (using
the values under £ > 0). In the MPE where both firms upgrade at (L, L) and mixing at the

quality-follower state,

_ k=28 —2((a-1DB+c(B+7)?)
b= —2B(a+ 2k — 1) + 2B2¢ + r(k — 2cr)

And the long-run joint profit is

r(—4Bc(—a+c(B+7)+ 1)+ 2ck(58 + 1) — k?)
28(a+ 2k — 1) — 28%¢c + r(2cr — k)

In the MPE that both firm probabilistically mixing at (L, L) and do not upgrade at the quality-

follower states,

B 2B8+r)at+c(B+r)+k—1)
—(a+k—1)28+43r)+c2B+7r)(B+7r) —2k(B+7)

B =
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And the joint profits are

r(2a+3k—2)(a—c(B+r)+k—1)
" 2B8(a— Be+ 2k — 1) +r(3a — 3Bc + 5k — 3) — er?’

What remains is taking derivatives. It turns out the same factor, 1 — o — 3¢(r + ), determines the
sign of the derivatives d7p/0k, which is a strictly decreasing function of ¢, positive at the lower
bound of the MPE c3, and negative at the upper bound ¢. More specifically, at lower bound c3,
(r+B)es =mi(H,H) — m(L, H) = k/2, and the factor is

3k 3k
l—a—2>3k— 2 >0,
Q 5 2>

where the second inequality follows from the assumption that o« < 1 — 3k. At the upper bound,
(r+pB)¢ =mi(H,L) — mi(L, L). Depending on ¢, this is

—2+2a+—92k, if—32k<oz<1—3k,
Tao 9k 3k
—24 — 4+ — if k < —
+ 5 + 1 ifk<ax< 5

2

—2+2a+%+3k, if0<a<k

In the first case, since —2 + 2a < —6k, it is negative. In the second case, notice that it is increasing
in o and k, so that the maximum is obtained at & = k and k = 2/9, which is —1/3 < 0. At the
last case, first observe that it is increasing in ¢, so that it is less than —2 + 23k/4, by setting o = k.
Then, this is increasing in k, and the maximum is obtained at k£ = 2/9, which gives —13/18 < 0.
The existence of ¢ follows from the intermediate value theorem, and the uniqueness of ¢ follows

from the fact that 1 — o — 3(r + [)c is strictly decreasinginc. W
Proof of Proposition 11

We show the simpler first MPE here, and leaving the second mixed strategy deterrence to the

online appendix. The value functions are
‘/O(HvL) :‘/E](H>H)7 %(LaH) :_C+‘/0(H>H)v and ‘/O(L>L) :wO(LaL)£+5%(L>L)

The no-profitable-deviation condition at (L, L) simplifies to ¢ > (mo(H,H) — mo(L, L))/(r + B),
which is just ¢ > ¢;. The no-profitable-deviation condition at (L, H) involves higher order terms

as the first order terms converge to exactly 0)2¢ and simplifies to
g y p

B mo(L, H)r B 57T0(L,L)‘

C(B+T)<7TO(H7H) B+r B+r

2%Checking higher order terms when the first order terms converge to 0 is necessary: this guarantees that the

equilibrium in consideration is indeed supported in a discrete time setup, namely, when A is small but strictly positive.
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Notice that the RHS is (r + 3)ca.

In the mixed-strategy deterrence MPE, the procedure still involves first solving the value
function (by assuming that Firm 0 does not upgrade), and then use the indifference condition of
Firm 0 to solve the mixing probability of Firm 1 in the equilibrium. This is similar to the procedure
in the proof at Appendix B. It is then shown that the probability converges to a rate in the limit,
and one need to check (i) the rate is weakly positive, and (ii) there is no profitable deviation at
(L, L) (state (L, H) is covered by the indifference condition). W

Discussions of Symmetric MPE

The remaining symmetric MPE mentioned at the end of subsection 4.3 is the following:

* At (L, L), both firms upgrade with probability

7T0(H, L) — 7T0(H, H) — 7T0(L,H) + 7T0(L,L)
2(mo(H, L) — mo(H, H))

4(mo(H, L) — mo(H, H))(=Bc —cr + mo(H, H) — mo(L, L))
+ (—mo(H, H) + mo(H, L) — wo(L, H) + mo(L, L))?
2(mo(H, L) — mo(H, H))

e At(L,H)/(H, L), the corresponding firm upgrades for sure.

This isan MPE if mo(H, H) — mo(L, L) < ¢(r+ ) < mo(H, H) — mo(L, H). Observe that this range is
fully covered by the alway-upgrading MPE. Also, this MPE is outcome equivalent to the always-
upgrading MPE, given that the upgrade is probabilistic. For this reason, it suffices to consider the
always-upgrading MPE.

We also need to note that the joint profits in joint-profit-maximizing MPE selection standard
are not the same as the long-run average joint profits. In the previous case, it can be considered
as a firm’s decision problem. As an equilibrium refinement, it considers the possible choice of
the firms, and firms make decisions based on the value functions. The joint-profit maximization
standard there means that state by state, the sum of the two firms value functions is the largest
among all such sums. Importantly, firms discount the future under this refinement. In this sense,
the front-load upgrading costs at lower-quality states can have a significant impact on the firms’
value functions. It then can be verified that when there is a multiplicity, firms always prefer the

equilibria with fewer upgrades.

In the latter case, the term “long-run average joint profits” is a welfare consideration. It is
considered from the planner’s perspective when the initial state does not matter any longer. It
utilize the Abel-Cesaro equivalence so that it seems that there is no discount. In particular, the

upgrading costs are not front loaded.
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We now consider firms’ standard (i.e., value function) to resolve multiplicity. Multiplicity
exists under three regions: two deterrence region, and the higher-cost no upgrade region. We
here consider the first deterrence region, where the two MPE in considerations are: (i) Always
upgrading, and (ii) Pure-punishment upgrading deterrence in Proposition 11. We will use ¢y,
which indicates that in this multiplicity region, (r + )¢ > mo(H, H) — mo(L, L).

Notice that the two MPE coincide as long as the initial state is not (L, L), which suggests that

it suffices to consider the difference of V(L, L). Below, we consider
V(L. L) = V5 (L, L), ()

where the superscript D means “deterrence” and the superscript A means “always upgrading”.
The difference is evaluated at A — 0. Since 7y(L, L) depends on «, we need to consider three

cases:

® 3k/2 < a < 1 — 3k. The difference in (4) is 2¢(r + 3)/r. This is always positive.
* k < a < 3k/2. The difference in (4) is

2a — 3k + 4e(r + )
2r '

which is increasing in c. Substitute the lower bound (r + )¢ > mo(H, H) — mo(L, L), and
since mo(L, L) = (a/2) — (k/4) in this case, the difference is exactly 0 at the lower bound of ¢
and become positive in the multiplicity region.

® k< o < 3k/2. The difference in (4) is

a? — 2k(k —2¢(B+ 7))
2kr

which is again increasing in c. Given that mo(L, L) = o?/4k in this case, the difference is

again exactly 0 at the lower bound of ¢ and become positive in the multiplicity region.

The comparisons for the remaining two regions are similar and mostly algebraic, which we

omit here.
Proof of Corollary 12

For the ease of notations, instead of considering ¢ directly, we consider ¢(r + ) instead. We start
with the upper boundaries. The firms stop upgrading at mo(H, L) — mo(L, L). To avoid too many
case-by-case discussions involved at 7o (L, L), we consider a large mo(H, L) —mo(L, H) =1 —a —k,
and show this is still lower than the cost where the social planner stops upgrading. If o < k/2, the

social planner’s boundary is
—202 — k* + 2k
2k
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and the difference between the social planner’s boundary and the firms” boundary is

a2+k
o — — 4
k 2’

which is positive under the given range. When o > £ /2, the social planner’sboundaryis 1 —a—k/4,
which is obviously higher.

For the lower bound, notice that the social planner starts to upgrade at k/4, while the firms’
threshold is (r + f)czs = k/2. A

D Discussions of Asymmetric MPE

There are also asymmetric MPE in this game, which are summarized as follows:

® Case A. In the upgrading-deterrence region, there exists the following MPE:
— One firm mixes at (L, L) with a rate and upgrades at the quality-follower state for sure.
— The other firm does not upgrade at (L, L) and upgrades at the quality-follower state
with a rate.
¢ Case B. In the first direct-competition region (c3 < ¢ < ¢), the asymmetric MPE mentioned at
the end of subsection 3.2 is a special case of the following;:
— One firm mixes at (L, L) with a probability and mixes at the quality-follower state with
a rate.
— The other firm upgrades at (L, L) for sure and mixes at the quality-follower state with
a rate.
¢ Case C. In the second direct-competition region (¢ < ¢ < ¢), there is a Chicken MPE:
- One firm upgrades at (L, L) for sure.
- No other upgrade.

We first note that asymmetric equilibria cannot eliminate inefficiencies. In Case A, for ¢ not
too low, the social planner’s optimal policy is to keep the quality state at (H, L). Case A instead
generate a steady state where four possible quality states are all present. In particular, both (L, L)
and (H, H) are possible. In Case B, it is in fact a continuum of MPE depending on how the firms
play the mixed strategies. Neverthless, (H, H) is always present in the steady state in a non-trivial
way, either from the upgrading behavior at (L, L) or the rate mixing at the quality-follower state
with a rate, while the social planner would like to keep the state at (H, L). Also, (L, L) is still not
on path in any equilibrium. In both cases, the upgrading is not dynamically efficient — the firms do
not upgrade the same way as the social planner. In Case C, the firms are dynamically efficient: the
steady state is (H, L), just as the choice of social planner. The inefficiency when k£ > 0 comes from
the static price competition. But this can be considered as a variation of the inefficiencies described

at Corollary 12. In Corollary 12, when cost is higher, there is exactly one cost at which the firms are
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efficient (namely, the point where the firms transitions from over-upgrading to under-upgrading).
If we consider Case C, we just enlarge the transition area from a point to an interval.

This shows that even if we consider asymmetric MPE, firm’s upgrading behavior is not efficient
in general. Moreover, the sources of the inefficiencies are often similar to the symmetric MPE. In
Case A, the equilibrium combines the feature of competitions and deterrence. The deterrence is
only partially effective, leading to one firm not upgrading and the other firm mixing at (L, L). Yet to
achieve this deterrence, firms must compete at higher quality levels. In Case B, the over-investment
is derived from competition, exactly the same as the symmetric MPE.

Next, consider the monotonicity of the upgrading frequency. It should be easy to see that this
is still not monotonic even if we consider the asymmetric equilibria. For the range of ¢ where the
symmetric MPE is upgrading deterrence, the corresponding asymmetric MPE is Case A, where
(L, L) is an outcome on path, since the (only) firm who upgrades at (L, L) uses a rate-mixing
upgrading strategy. But in Cases B and C, the originally direct-competition region, (L, L) is still
never on path: In Case B, at least one firm upgrades at (L, L) for sure, and in Case C, the Chicken
MPE indicates that only the quality-leader-follower states are possibly on path. This shows the
non-monotonicity in upgrading frequency still persist under asymmetric equilibria.

Now consider the interactions of two dimensions of product differentiation. The discussions
here can be a little tricky for the following reasons:

* There are possible interactions now in the originally upgrading-deterrence region, i.e., Case

A, since the outcome distribution is not trivially (L, L) only. However, since (L, L) is still on
path, there are two states in which firms have no vertical differentiation, 75 now include the
time spent at (H, H) and (L, L).
¢ In the second originally direct-competition region, i.e., Case C, there is no longer interaction
due to the asymmetric Chicken MPE, in which case the outcome is now always a quality-
leader-follower state, suggesting 7p = 0.
For this reason, the cases to be considered here is Case A and Case B. Due to complexity of
the calculations under asymmetric equilibria, simplifications of the range of the parameters are
adopted.

For Case A, let x; be the rate of mixing at (L, L) of one firm and x}, be the rate of mixing at

(L, H) of the other firm. Then,

 mpay+ B2
a4 T+ 52
where
o B2c + cr? + 2Ber — mo(H, H)(B + 1) + mo(L, H)r + Bmo(L, L)
b —c(B+71)+m(H,H) — mo(L, H) ’
o) = (ﬁ + T)(ﬂ'o(H, L) — 7T()(L,L) — c(ﬁ + ’I”))

c(B+r)—(mo(H,H) —mo(L, L))
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In the case that 0 < a < k and k — 0, the sign of 075 /0k is determined by
4B+ r)(Be— (1 — )

o a2r2
Since r > 0, (r + f)c < 1 — a = mo(H, L), this is positive. Alternatively, pick any & € (0,2/9), and

let & — 0, the sign of the same derivative is determined by
—81{:4(6 + T)?’(SC(B +7)—1)(k—2c¢(B+ 7“))2,

and this is again positive since 3¢(3 +r) < 3k/2 < 1, given the range of c under Case A. Therefore,
under Case A, for small enough ¢, or small enough £ (and « < k), the two dimensions of product
differentiation exhibits substitution relations.?

For Case B, pick the simple case such that the firm mixes at (L, L) will not choose to upgrade
at (L, H). Let this firm be firm 0, without loss of generality. The mixing probability is

_r+Bc(r+8) = (mo(H, H) — mo(L, H))
B mo(H,L)—mo(L,H) —c(r+p5)

Firm 1’s strategy is the same as in the symmetric direct-competition MPE. 75 is defined in the same

way: the time spent at (H, H) in the equilibrium. It turns out that for ¢(r + ) close to k/2, the
lower bound, 075 /0k < 0.2

To see why the sign is opposite to the sign under the symmetric MPE, observe that 9z;/0k < 0.
That is, while firm 1 still upgrades more as & increases, firm 0 now upgrade less as k increases.
This is because firm 0 is the disadvantageous player who is dominated in competition. As firm 1
becomes more aggresive given the higher k, firm 0 is closer to a chicken player.

We conclude the discussion of the interactions of two dimensions of product differentiation
with the following two observations. First, with the parameter restrctions installed above, there
is still the same trend: the two dimensions are first substitute and then complements, although
the region of the interaction now locates at smaller c (i.e., upgrading-deterrence region and the
first direct-competition region). Second, the explanation of the interactions are also the same:
as k increases, the firms experience a strengthened or a weakened upgrading incentive based on
the changes of the firms’ forward-looking upgrading strategies triggered by the changes of stage
payoffs.

E Proof of Results in Section 5

Proof of Proposition 13

The proof uses the same idea: solving the value functions and check the one-shot deviations.

The value function V (H, H) is different though because of correlations. In particular, one needs to

The general expressions of 07 /0k are rather complicated, and it is difficult to determine the exact sign.
2% And for larger c, the sign in general depends on the relative size of r and f.
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use the probabilities in Table 1 to replace the probabilities under independence.

This procedure gives the same ¢; and c3, and

B mo(L, H)(Bp+r)  m(L, L)(B(1 = p))
(T—Fﬁ)CQ—TFo(H,H)— 54—?” — 5+7~ .

Then it is easy to see that c; is increasing in p and becomes ¢3 when p = 1, since (r + f)c3 =
mo(H,H) — mo(L, H). h(c) is a bit longer, but the derivative 9h/Jp has the following relatively

simple form

BB+ 1) (c(B+r)—mo(H,H) + mo(L,H))(c(B+r) — mo(H, L) + mo(L, H))
(c(B+7)2 = mo(H,H)(B + 1)+ mo(L, H)(Bp + 1) — Bmo(L, L)p + Bro(L, L))

The denominator is clearly positive. The two factors containing (r + 3)c are both negative since

¢ < c3. It follows that the derivative is positive. W
Proof of Proposition 14

The proof starts with the same idea again by solving the value functions and check the indif-

ference condition, just as the case where p = 0. This gives the same c3 and ¢, and

WO(H,H)(B—FT) Wo(H,L)(ﬁ—ﬁp)
—Bp+26+r —Bp+268+r

(T—f‘ﬁ)é: —7T0(L,H).

It is easy to see that ¢ is decreasing in p and becomes c3 when p = 1.

We also have
of  Ble(B+r)—mo(H, L)+ mo(L, H))

op  c(B+r)—mo(H,H)+mo(L,H)

The denominator is positive since ¢ > c3, and the numerator is negative since ¢ < ¢, so that the

derivative is negative.
dg _ le(B+r) — mo(H, L) + molL, H))
dp  (mo(H, L) —m(H, H))(5+7)

The denominator is positive, and the numerator is negative since ¢ < ¢, so that the derivative is

negative. M
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